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The engineering design
optimization problem

* Objective
e Given a tool that evaluates designs, find the best design
according to some measure of merit and subject to some
constraints
* Parametric design

e Example

e Given an aircraft simulator

* Design a supersonic aircraft capable of taking 70
passengers from Chicago to Paris in 3 hours

e The aircraft should have the minimum takeoff mass
(measure of merit)

e The wings should be strong enough to hold the weight of
the aircraft in all stages (constraint)



Objective: Optimization Method
Tailored to Design

* Properties of complex design domains:

e Many unevaluable points
e Simulators are designed for use by humans
* Many infeasible points
e Expensive evaluation functions
e Discontinuity of design space
* Many local optima
* Physical or numerical



Domain 1: Supersonic
aircraft design

* 12 parameters

e 37 inequality constraints

* 0.6% of the space is
evaluable
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Aircraft search space cross section

Exhaust Nozzle Design: Isosurface Visualization




Domain 2: Missile inlet design
(NIDA)

¢ 8 parameters

* 20 inequality constraints
e 3% evaluable, 0.147% feasible
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Genetic Algorithm Based
Design Optimization

* Maintains a population of potential
designs (individuals)
o Better designs are generated using

* Crossover: 2 designs from the current population combine
attributes
* Mutation: 1 design changes attributes

* Fitness of a design is based on measure of
merit and constraint violation(penalty)



Elements of a steady state

genetic algorithm

* Representation

* Fitness function

e Initialization strategy
*Selection strategy

e Crossover operators
* Mutation operators
*replacement strategy
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GADO: Genetic Algorithm for
Design Optimization

Representation
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GADO: Genetic Algorithm for
Design Optimization

e Most Novel ideas:

* Guided crossover

* Screening module

* Diversity maintenance module
e Adaptive penalty functions



Guided Crossover

e Method:

e Select one point
* Find second point in "best" direction
* Pick a point along the line connecting them

e Motivation:

e Add gradient-like functionality without
expense of computing gradients



Screening Module

e Method:

* Find k nearest neighbors
* Discard if all k are below threshold
e Threshold = Function of current population

e Motivation:

* Decreases number of evaluations by avoiding
unevaluable regions, as identified in past
evaluations

e Can eliminate >30% of evaluations

* Negligible overhead



Diversity Maintenance
Module

e Method:

o At start compute inter-solution distances

e If inter-solution distances are too small relative
to this, reseed from earlier population elements

* Reject points near past points

e Motivation:

* Maintains diversity
e Fewer evaluations



Adaptive Penalties

e Method:

e Fitness = Measure of merit + Penalty
* Penalty = C( t) X ) constraint violations

o C( t) increases whenever the best element of the
population does not have the least constraint violation

o C(t) can also decrease to inject "slightly" infeasible
points into the population
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Comparison of methods:
Conceptual Design of Aircraft

e Random probes:
* No feasible points in 50,000 tries

e Multistart CFSQP:

e Inferior on average
e High variance in quality of solutions

* Genocop III (GENetic algOrithm for
Constrained OPtimization),
e ASA (Adaptive Simulated Annealing):

e Require feasible starting points
* Inferior from "good" starting points



GADO vs. CFSQP in
Aircraft design (domain 1)
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GADO runs
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Multistart CFSQP runs
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GADO vs. Genocop III and ASA
in Aircraft design domain
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Results in Missile Inlet
Design (domain 2)
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Case Study: Redesign of a two-
dimensional supersonic inlet

* Original designs by ITAM (Russia),
redesign by Michael Blaize
(Aérospatiale,France)

e First inlet

e [TAM design: Total pressure recovery=0.134
* GADO: Total pressure recovery=0.194 (1.25 CPU hours)
e CFSQP:
* From GADO’s optimum: no improvement
e From original (ITAM) design: Total pressure
recovery=0.160
e Multistart: no better than the original design (1 CPU

day)



GADO achieved

e Faster optimizations

o Better final designs

* Jower variance in final design quality

* Jow sensitivity to internal parameters
and setup



Generating and using reduced
models for design optimization

¢ Reduced models and their sources

e Generation of reduced models

e Using reduced models through
informed operators

e Future directions



Reduced models

¢ Pre-existent:

e Simpler physical models
* Coarse grids

e Generated:

e Functional Approximations (Response
Surfaces)
* Least Squares
e Neural Networks
* Genetic Programming



Observation

* Previous methods do not take properties of

design domains into consideration

e Unevaluable points
e Numerical problems: discontinuity, high non-linearity

* Some approaches make strong
assumptions about reduced model accuracy



Generating reduced models by
incremental approximate clustering

* Maintain previously encountered points
divided into dynamic clusters

e Periodically introduce new clusters and
refresh all clusters

e Periodically compute quadratic
approximations

e Separate approximations for measure of merit and constraints
e Global approximation: all points
* Cluster approximations: large enough clusters



Approximate evaluation of a
new point

o If point’s cluster has

approximations, use

them, otherwise use o ©

global approximations . N
e Two phase approach: ./di%.'
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Informed operators

* Idea: replace randomness with
decisions informed by the
reduced model

* Examples:

e Informed initialization
e Informed crossover (parents,method)
e informed mutation (type,amplitude)



Informed mutation

* Crossover done, followed by several random
mutations

e Random mutations are evaluated using
reduced model best becomes newborn

Parent 1

. . Random mutations

Crossover

0 o

Best mutation becomes newborn

parent 2



Utility of informed
operators in aircraft design
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Speedup with informed
operators in aircraft design
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Utility of informed operators
in missile inlet design
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Conclusion

* GADO is a GA tailored for design
optimization

o Its merit was demonstrated in several
realistic and benchmark domains

* Further improvement expected using
reduced models

e Several extensions (example: OEGADO)



