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CHAPTER�

17�

Tutorial Exercises for  
the Weka Explorer

The best way to learn about the Explorer interface is simply to use it. This 
chapter presents a series of tutorial exercises that will help you learn about 
Explorer and also about practical data mining in general. The first section is 
introductory, but we think you will find the exercises in the later sections quite 
thought-provoking.

We begin with a quick, guided tour of the Explorer interface, examining each of 
the panels and what they can do, which largely parallels the introduction given in 
Chapter 11. Our screenshots are from Weka 3.6, although almost everything is the 
same with other versions.

17.1 INTRODUCTION TO THE EXPLORER INTERFACE
Invoke Weka from the Windows Start menu (on Linux or the Mac, double-click 
weka.jar or weka.app, respectively). This starts up the Weka GUI Chooser (shown 
in Figure 11.3(a)). Click the Explorer button to enter the Weka Explorer. The Pre-
process panel (shown in Figure 11.3(b)) opens up when the Explorer interface is 
started.

Loading a Dataset
Load a dataset by clicking the Open file button in the top left corner of the panel. 
Inside the data folder, which is supplied when Weka is installed, you will find a file 
named weather.nominal.arff. This contains the nominal version of the standard 
“weather” dataset in Table 1.2. Open this file (the screen will look like Figure 
11.3(b)).

As the result shows, the weather data has 14 instances, and 5 attributes called 
outlook, temperature, humidity, windy, and play. Click on the name of an attribute 
in the left subpanel to see information about the selected attribute on the right, such 
as its values and how many times an instance in the dataset has a particular value. 
This information is also shown in the form of a histogram. All attributes in this 
dataset are “nominal”—that is, they have a predefined finite set of values. The last 
attribute, play, is the “class” attribute; its value can be yes or no.
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Familiarize yourself with the Preprocess panel by doing the following exercises. 
The solutions to these and other exercises in this section are given at the end of the 
section.

Exercise 17.1.1. What are the values that the attribute temperature can have?
Exercise 17.1.2. Load a new dataset. Click the Open file button and select the 
file iris.arff, which corresponds to the iris dataset in Table 1.4. How many 
instances does this dataset have? How many attributes? What is the range of 
possible values of the attribute petallength?

The Dataset Editor
It is possible to view and edit an entire dataset from within Weka. To do this, load 
the weather.nominal.arff file again. Click the Edit button from the row of buttons at 
the top of the Preprocess panel. This opens a new window called Viewer, which lists 
all instances of the weather data (see Figure 17.1).

Exercise 17.1.3. What is the function of the first column in the Viewer 
window?
Exercise 17.1.4. What is the class value of instance number 8 in the weather 
data?
Exercise 17.1.5. Load the iris data and open it in the editor. How many 
numeric and how many nominal attributes does this dataset have?

FIGURE 17.1 

The data viewer. 
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Applying a Filter
As you know, Weka “filters” can be used to modify datasets in a systematic fashion—
that is, they are data preprocessing tools. Reload the weather.nominal dataset, and 
let’s remove an attribute from it. The appropriate filter is called Remove; its full 
name is

weka.filters.unsupervised.attribute.Remove

Examine this name carefully. Filters are organized into a hierarchical structure of 
which the root is weka. Those in the unsupervised category don’t require a class 
attribute to be set; those in the supervised category do. Filters are further divided 
into ones that operate primarily on attributes (the attribute category) and ones that 
operate primarily on instances (the instance category).

Click the Choose button in the Preprocess panel to open a hierarchical menu 
(shown in Figure 11.9(a)) from which you select a filter by following the path 
corresponding to its full name. Use the path given in the full name above to 
select the Remove filter. The text “Remove” will appear in the field next to the 
Choose button.

Click on the field containing this text. The Generic Object Editor window, which 
is used throughout Weka to set parameter values for all of the tools, opens. In this 
case it contains a short explanation of the Remove filter (shown in Figure 11.9(b))—
click More to get a fuller description (Figure 11.9(c)). Enter 3 into the attribute-
Indices field and click the OK button. The window with the filter options closes. 
Now click the Apply button on the right, which runs the data through the filter. The 
filter removes the attribute with index 3 from the dataset, and you can see that this 
has happened. This change does not affect the dataset in the file; it only applies to 
the data held in memory. The changed dataset can be saved to a new ARFF file by 
pressing the Save button and entering a file name. The action of the filter can be 
undone by pressing the Undo button. Again, this applies to the version of the data 
held in memory.

What we have described illustrates how filters are applied to data. However, in 
the particular case of Remove, there is a simpler way of achieving the same effect. 
Instead of invoking a filter, attributes can be selected using the small boxes in the 
Attributes subpanel and removed using the Remove button that appears at the bottom, 
below the list of attributes.

Exercise 17.1.6. Load the weather.nominal dataset. Use the filter weka.
unsupervised.instance.RemoveWithValues to remove all instances in which the 
humidity attribute has the value high. To do this, first make the field next to 
the Choose button show the text RemoveWithValues. Then click on it to get the 
Generic Object Editor window, and figure out how to change the filter settings 
appropriately.
Exercise 17.1.7. Undo the change to the dataset that you just performed, and 
verify that the data has reverted to its original state.
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The Visualize Panel
Now take a look at Weka’s data visualization facilities. These work best with 
numeric data, so we use the iris data. Load iris.arff, which contains the iris dataset 
of Table 1.4 containing 50 examples of three types of Iris: Iris setosa, Iris versicolor, 
and Iris virginica.

Click the Visualize tab to bring up the Visualize panel (shown in Figure 11.17). 
Click the first plot in the second row to open up a window showing an enlarged plot 
using the selected axes. Instances are shown as little crosses, the color of which 
depends on the instance’s class. The x-axis shows the sepallength attribute, and the 
y-axis shows petalwidth.

Clicking on one of the crosses opens up an Instance Info window, which lists 
the values of all attributes for the selected instance. Close the Instance Info window 
again.

The selection fields at the top of the window containing the scatter plot determine 
which attributes are used for the x- and y-axes. Change the x-axis to petalwidth and 
the y-axis to petallength. The field showing Color: class (Num) can be used to 
change the color coding.

Each of the barlike plots to the right of the scatter plot window represents a 
single attribute. In each bar, instances are placed at the appropriate horizontal 
position and scattered randomly in the vertical direction. Clicking a bar uses that 
attribute for the x-axis of the scatter plot. Right-clicking a bar does the same for 
the y-axis. Use these bars to change the x- and y-axes back to sepallength and 
petalwidth.

The Jitter slider displaces the cross for each instance randomly from its true 
position, and can reveal situations where instances lie on top of one another. 
Experiment a little by moving the slider.

The Select Instance button and the Reset, Clear, and Save buttons let you modify 
the dataset. Certain instances can be selected and the others removed. Try the Rect-
angle option: Select an area by left-clicking and dragging the mouse. The Reset 
button changes into a Submit button. Click it, and all instances outside the rectangle 
are deleted. You could use Save to save the modified dataset to a file. Reset restores 
the original dataset.

The Classify Panel
Now we apply a classifier to the weather data. Load the weather data again. Go to 
the Preprocess panel, click the Open file button, and select weather.nominal.arff from 
the data directory. Then switch to the Classify panel (shown in Figure 11.4(b)) by 
clicking the Classify tab at the top of the window.

Using the C4.5 Classifier
As you learned in Chapter 11 (page 410), the C4.5 algorithm for building decision 
trees is implemented in Weka as a classifier called J48. Select it by clicking the Choose 



button near the top of the Classify tab. A dialog window appears showing various 
types of classifier. Click the trees entry to reveal its subentries, and click J48 to choose 
that classifier. Classifiers, like filters, are organized in a hierarchy: J48 has the full 
name weka.classifiers.trees.J48.

The classifier is shown in the text box next to the Choose button: It now reads 
J48 –C 0.25 –M 2. This text gives the default parameter settings for this classifier, 
which in this case rarely require changing to obtain good performance.

For illustrative purposes we evaluate the performance using the training data, 
which has been loaded in the Preprocess panel—this is not generally a good idea 
because it leads to unrealistically optimistic performance estimates. Choose Use 
training set from the Test options part of the Classify panel. Once the test strategy 
has been set, the classifier is built and evaluated by pressing the Start button. 
This processes the training set using the currently selected learning algorithm, 
C4.5 in this case. Then it classifies all the instances in the training data and 
outputs performance statistics. These are shown in Figure 17.2(a).

Interpreting the Output
The outcome of training and testing appears in the Classifier Output box on the right. 
Scroll through the text and examine it. First, look at the part that describes the deci-
sion tree, reproduced in Figure 17.2(b). This represents the decision tree that was 
built, including the number of instances that fall under each leaf. The textual represen-
tation is clumsy to interpret, but Weka can generate an equivalent graphical version.

Here’s how to get the graphical tree. Each time the Start button is pressed and 
a new classifier is built and evaluated, a new entry appears in the Result List panel 
in the lower left corner of Figure 17.2(a). To see the tree, right-click on the entry 
trees.J48 that has just been added to the result list and choose Visualize tree. A 
window pops up that shows the decision tree in the form illustrated in Figure 17.3. 
Right-click a blank spot in this window to bring up a new menu enabling you to 
auto-scale the view. You can pan around by dragging the mouse.

Now look at the rest of the information in the Classifier Output area. The next 
two parts of the output report on the quality of the classification model based on the 
chosen test option.

This text states how many and what proportion of test instances have been 
correctly classified:

Correctly Classified Instances  14  100%

This is the accuracy of the model on the data used for testing. In this case it is 
completely accurate (100%), which is often the case when the training set is used 
for testing.

At the bottom of the output is the confusion matrix:

=== Confusion Matrix ===

 a b   <– classified as
 9 0 | a = yes
 0 5 | b = no

 17.1 Introduction to the Explorer Interface 563
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FIGURE 17.2 

Output after building and testing the classifier: (a) screenshot and (b) decision tree. 

J48 pruned tree 
------------------ 
 
outlook = sunny 
|   humidity = high: no (3.0) 
|   humidity = normal: yes (2.0) 
outlook = overcast: yes (4.0) 
outlook = rainy 
|   windy = TRUE: no (2.0) 
|   windy = FALSE: yes (3.0) 
 
Number of Leaves  :  5 
 
Size of the tree :  8 

(a)

(b)

Each element in the matrix is a count of instances. Rows represent the true classes, 
and columns represent the predicted classes. As you can see, all 9 yes instances have 
been predicted as yes, and all 5 no instances as no.

Exercise 17.1.8. How would this instance be classified using the decision tree?

outlook = sunny, temperature = cool, humidity = high, windy = TRUE



Setting the Test Method
When the Start button is pressed, the selected learning algorithm is run and the 
dataset that was loaded in the Preprocess panel is used with the selected test protocol. 
For example, in the case of tenfold cross-validation this involves running the learn-
ing algorithm 10 times to build and evaluate 10 classifiers. A model built from the 
full training set is then printed into the Classifier Output area: This may involve 
running the learning algorithm one final time. The remainder of the output depends 
on the test protocol that was chosen using test options; these options were discussed 
in Section 11.1.

Exercise 17.1.9. Load the iris data using the Preprocess panel. Evaluate C4.5 
on this data using (a) the training set and (b) cross-validation. What is the 
estimated percentage of correct classifications for (a) and (b)? Which estimate 
is more realistic?

Visualizing Classification Errors
Right-click the trees.J48 entry in the result list and choose Visualize classifier 
errors. A scatter plot window pops up. Instances that have been classified cor-
rectly are marked by little crosses; ones that are incorrect are marked by little 
squares.

Exercise 17.1.10. Use the Visualize classifier errors function to find the 
wrongly classified test instances for the cross-validation performed in Exer-
cise 17.1.9. What can you say about the location of the errors?

FIGURE 17.3 

The decision tree that has been built. 
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17.2 NEAREST-NEIGHBOR LEARNING 
AND DECISION TREES
In this section you will experiment with nearest-neighbor classification and deci-
sion tree learning. For most of it, a real-world forensic glass classification dataset 
is used.

We begin by taking a preliminary look at the dataset. Then we examine the effect 
of selecting different attributes for nearest-neighbor classification. Next we study 
class noise and its impact on predictive performance for the nearest-neighbor method. 
Following that we vary the training set size, both for nearest-neighbor classification 
and for decision tree learning. Finally, you are asked to interactively construct a 
decision tree for an image segmentation dataset.

Before continuing you should review in your mind some aspects of the classifica-
tion task:

• How is the accuracy of a classifier measured?
• To make a good classifier, are all the attributes necessary?
• What is class noise, and how would you measure its effect on learning?
• What is a learning curve?
• If you, personally, had to invent a decision tree classifier for a particular 

dataset, how would you go about it?

The Glass Dataset
The glass dataset glass.arff from the U.S. Forensic Science Service contains data 
on six types of glass. Glass is described by its refractive index and the chemical 
elements that it contains; the the aim is to classify different types of glass based 
on these features. This dataset is taken from the UCI datasets, which have been 
collected by the University of California at Irvine and are freely available on  
the Web. They are often used as a benchmark for comparing data mining 
algorithms.

Find the dataset glass.arff and load it into the Explorer interface. For your own 
information, answer the following exercises, which review material covered in the 
previous section.

Exercise 17.2.1. How many attributes are there in the dataset? What are 
their names? What is the class attribute? Run the classification algorithm 
IBk (weka.classifiers.lazy.IBk). Use cross-validation to test its performance, 
leaving the number of folds at the default value of 10. Recall that you can 
examine the classifier options in the Generic Object Editor window that 
pops up when you click the text beside the Choose button. The default 
value of the KNN field is 1: This sets the number of neighboring instances 
to use when classifying.
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Exercise 17.2.2. What is the accuracy of IBk (given in the Classifier 
Output box)? Run IBk again, but increase the number of neighboring 
instances to k = 5 by entering this value in the KNN field. Here and 
throughout this section, continue to use cross-validation as the evaluation 
method.
Exercise 17.2.3. What is the accuracy of IBk with five neighboring instances 
(k = 5)?

Attribute Selection
Now we investigate which subset of attributes produces the best cross-validated 
classification accuracy for the IBk algorithm on the glass dataset. Weka contains 
automated attribute selection facilities, which are examined in a later section, but it 
is instructive to do this manually.

Performing an exhaustive search over all possible subsets of the attributes is 
infeasible (why?), so we apply the backward elimination procedure described in 
Section 7.1 (page 311). To do this, first consider dropping each attribute individually 
from the full dataset, and run a cross-validation for each reduced version. Once you 
have determined the best eight-attribute dataset, repeat the procedure with this 
reduced dataset to find the best seven-attribute dataset, and so on.

Exercise 17.2.4. Record in Table 17.1 the best attribute set and the greatest 
accuracy obtained in each iteration. The best accuracy obtained in this process 
is quite a bit higher than the accuracy obtained on the full dataset.
Exercise 17.2.5. Is this best accuracy an unbiased estimate of accuracy on 
future data? Be sure to explain your answer. (Hint: To obtain an unbiased 
estimate of accuracy on future data, we must not look at the test data at all 

Table 17.1 Accuracy Obtained Using IBk, for Different Attribute Subsets

Subset Size
(No. of Attributes)

Attributes in “Best” 
Subset

Classification  
Accuracy

9
8
7
6
5
4
3
2
1
0
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when producing the classification model for which the estimate is being 
obtained.)

Class Noise and Nearest-Neighbor Learning
Nearest-neighbor learning, like other techniques, is sensitive to noise in the training 
data. In this section we inject varying amounts of class noise into the data and 
observe the effect on classification performance.

You can flip a certain percentage of class labels in the data to a randomly 
chosen other value using an unsupervised attribute filter called AddNoise, in weka.
filters.unsupervised.attribute. However, for this experiment it is important that the 
test data remains unaffected by class noise. Filtering the training data without 
filtering the test data is a common requirement, and is achieved using a metale-
arner called FilteredClassifier, in weka.classifiers.meta, as described near the end 
of Section 11.3 (page 444). This metalearner should be configured to use IBk as 
the classifier and AddNoise as the filter. FilteredClassifier applies the filter to the 
data before running the learning algorithm. This is done in two batches: first the 
training data and then the test data. The AddNoise filter only adds noise to the 
first batch of data it encounters, which means that the test data passes through 
unchanged.

Exercise 17.2.6. Record in Table 17.2 the cross-validated accuracy estimate 
of IBk for 10 different percentages of class noise and neighborhood sizes 
k = 1, k = 3, k = 5 (determined by the value of k in the k-nearest-neighbor 
classifier).
Exercise 17.2.7. What is the effect of increasing the amount of class noise?
Exercise 17.2.8. What is the effect of altering the value of k?

Table 17.2 Effect of Class Noise on IBk, for Different Neighborhood Sizes

Percentage Noise k = 1 k = 3 k = 5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%



Varying the Amount of Training Data
This section examines learning curves, which show the effect of gradually increas-
ing the amount of training data. Again, we use the glass data, but this time 
with both IBk and the C4.5 decision tree learners, implemented in Weka as J48.

To obtain learning curves, use FilteredClassifier again, this time in conjunc-
tion with weka.filters.unsupervised.instance.Resample, which extracts a certain 
specified percentage of a given dataset and returns the reduced dataset.1 Again, 
this is done only for the first batch to which the filter is applied, so the test 
data passes unmodified through the FilteredClassifier before it reaches the 
classifier.

Exercise 17.2.9. Record in Table 17.3 the data for learning curves for both the 
one-nearest-neighbor classifier (i.e., IBk with k = 1) and J48.
Exercise 17.2.10. What is the effect of increasing the amount of training data?
Exercise 17.2.11. Is this effect more pronounced for IBk or J48?

Interactive Decision Tree Construction
One of Weka’s classifiers is interactive: It lets the user—you!—construct your own 
classifier. Here’s a competition: Who can build a classifier with the highest predictive 
accuracy?

Follow the procedure described in Section 11.2 (page 424). Load the file segment-
challenge.arff (in the data folder that comes with the Weka distribution). This dataset 

1This filter performs sampling with replacement, rather than sampling without replacement, but the 
effect is minor and we will ignore it here.
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Table 17.3 Effect of Training Set Size on IBk and J48

Percentage of 
Training Set IBk J48

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
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has 20 attributes and 7 classes. It is an image segmentation problem, and the task is 
to classify images into seven different groups based on properties of the pixels.

Set the classifier to UserClassifier, in the weka.classifiers.trees package. We use 
a separate test set (performing cross-validation with UserClassifier is incredibly 
tedious!), so in the Test options box choose the Supplied test set option and click 
the Set button. A small window appears in which you choose the test set. Click Open 
file and browse to the file segment-test.arff (also in the Weka distribution’s data 
folder). On clicking Open, the small window updates to show the number of attri-
butes (20) in the data. The number of instances is not displayed because test instances 
are read incrementally (so that the Explorer interface can process larger test files 
than can be accommodated in main memory).

Click Start. UserClassifier differs from all other classifiers: It opens a special 
window and waits for you to build your own classifier in it. The tabs at the top of 
the window switch between two views of the classifier. The Tree visualizer shows 
the current state of your tree, and the nodes give the number of class values there. 
The aim is to come up with a tree of which the leaf nodes are as pure as possible. 
To begin with, the tree has just one node—the root node—containing all the data. 
More nodes will appear when you proceed to split the data in the Data visualizer.

Click the Data visualizer tab to see a two-dimensional plot in which the data 
points are color-coded by class, with the same facilities as the Visualize panel 
discussed in Section 17.1. Try different combinations of x- and y-axes to get the 
clearest separation you can find between the colors. Having found a good separa-
tion, you then need to select a region in the plot: This will create a branch in 
the tree. Here’s a hint to get you started: Plot region-centroid-row on the x-axis 
and intensity-mean on the y-axis (the display is shown in Figure 11.14(a)); you 
can see that the red class (sky) is nicely separated from the rest of the classes 
at the top of the plot.

There are four tools for selecting regions in the graph, chosen using the dropdown 
menu below the y-axis selector. Select Instance identifies a particular instance. Rec-
tangle (shown in Figure 11.14(a)) allows you to drag out a rectangle on the graph. 
With Polygon and Polyline you build a free-form polygon or draw a free-form 
polyline (left-click to add a vertex and right-click to complete the operation).

When you have selected an area using any of these tools, it turns gray. (In Figure 
11.14(a) the user has defined a rectangle.) Clicking the Clear button cancels the 
selection without affecting the classifier. When you are happy with the selection, 
click Submit. This creates two new nodes in the tree, one holding all the instances 
covered by the selection and the other holding all remaining instances. These nodes 
correspond to a binary split that performs the chosen geometric test.

Switch back to the Tree visualizer view to examine the change in the tree. 
Clicking on different nodes alters the subset of data that is shown in the Data 
visualizer section. Continue adding nodes until you obtain a good separation of 
the classes—that is, the leaf nodes in the tree are mostly pure. Remember, however, 
that you should not overfit the data because your tree will be evaluated on a 
separate test set.
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When you are satisfied with the tree, right-click any blank space in the Tree 
visualizer view and choose Accept The Tree. Weka evaluates the tree against the test 
set and outputs statistics that show how well you did.

Exercise 17.2.12. You are competing for the best accuracy score of a 
hand-built UserClassifier produced on the segment-challenge dataset and 
tested on the segment-test set. Try as many times as you like. When you 
have a good score (anything close to 90% correct or better), right-click the 
corresponding entry in the Result list, save the output using Save result 
buffer, and copy it into your answer for this exercise. Then run J48 on 
the data to see how well an automatic decision tree learner performs on 
the task.

17.3 CLASSIFICATION BOUNDARIES
In this section we examine the classification boundaries that are produced by dif-
ferent types of models. To do this, we use Weka’s Boundary Visualizer, which is 
not part of the Explorer interface. To find it, start up the Weka GUI Chooser as 
usual from the Windows Start menu (on Linux or the Mac, double-click weka.jar 
or weka.app, respectively) and select BoundaryVisualizer from the Visualization 
menu at the top.

The boundary visualizer shows a two-dimensional plot of the data and is most 
appropriate for datasets with two numeric attributes. We will use a version of the 
iris data without the first two attributes. To create this, start up the Explorer interface, 
load iris.arff using the Open file button, and remove the first two attributes (sepal-
length and sepalwidth) by selecting them and clicking the Remove button that 
appears at the bottom. Then save the modified dataset to a file (using Save) called, 
say, iris.2D.arff.

Now leave the Explorer interface and open this file for visualization using the 
boundary visualizer’s Open file button. Initially, the plot just shows the data in the 
dataset.

Visualizing 1R
The purpose of the boundary visualizer is to show the predictions of a given model 
for every possible combination of attribute values—that is, for every point in the 
two-dimensional space. The points are color-coded according to the prediction the 
model generates. We will use this to investigate the decision boundaries that different 
classifiers generate for the reduced iris dataset.

Start with the 1R rule learner. Use the Choose button of the boundary visualizer 
to select weka.classifiers.rules.OneR. Make sure you tick Plot training data; other-
wise, only the predictions will be plotted. Then click the Start button. The program 
starts plotting predictions in successive scan lines. Click the Stop button once the 
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plot has stabilized—as soon as you like, in this case—and the training data will be 
superimposed on the boundary visualization.

Exercise 17.3.1. Explain the plot based on what you know about 1R. (Hint: 
Use the Explorer interface to look at the rule set that 1R generates for this 
data.)
Exercise 17.3.2. Study the effect of the minBucketSize parameter on the 
classifier by regenerating the plot with values of 1, and then 20, and then some 
critical values in between. Describe what you see, and explain it. (Hint: You 
could speed things up by using the Explorer interface to look at the rule sets.)

Now answer the following questions by thinking about the internal workings of 
1R. (Hint: It will probably be fastest to use the Explorer interface to look at the 
rule sets.)

Exercise 17.3.3. You saw earlier that when visualizing 1R the plot always has 
three regions. But why aren’t there more for small bucket sizes (e.g., 1)? Use 
what you know about 1R to explain this apparent anomaly.
Exercise 17.3.4. Can you set minBucketSize to a value that results in less than 
three regions? What is the smallest possible number of regions? What is the 
smallest value for minBucketSize that gives this number of regions? Explain 
the result based on what you know about the iris data.

Visualizing Nearest-Neighbor Learning
Now let’s examine the classification boundaries created by the nearest-neighbor 
method. Use the boundary visualizer’s Choose button to select the IBk classifier 
(weka.classifiers.lazy.IBk) and plot its decision boundaries for the reduced iris 
data.

OneR’s predictions are categorical: For each instance, they predict one of the 
three classes. In contrast, IBk outputs probability estimates for each class, and the 
boundary visualizer uses them to mix the colors red, green, and blue that correspond 
to the three classes. IBk estimates class probabilities by looking at the set of k-nearest 
neighbors of a test instance and counting the number in each class.

Exercise 17.3.5. With k = 1, which is the default value, it seems that the set of 
k-nearest neighbors could have only one member and therefore the color will 
always be pure red, green, or blue. Looking at the plot, this is indeed almost 
always the case: There is no mixing of colors because one class gets a prob-
ability of 1 and the others a probability of 0. Nevertheless, there is a small 
area in the plot where two colors are in fact mixed. Explain this. (Hint: 
Examine the data carefully using the Explorer interface’s Visualize panel.)
Exercise 17.3.6. Experiment with different values of k, say 5 and 10. Describe 
what happens as k increases.
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Visualizing NaïveBayes
Turn now to the NaïveBayes classifier. Its assumption that attributes are conditionally 
independent given a particular class value means that the overall class probability 
is obtained by simply multiplying the per-attribute conditional probabilities together 
(and taking into account the class prior probabilities as well). In other words, with 
two attributes, if you know the class probabilities along the x- and y-axes (and the 
class prior), you can calculate the value for any point in space by multiplying them 
together (and then normalizing). This is easy to understand if you visualize it as a 
boundary plot.

Plot the predictions of NaïveBayes. But first discretize the attribute values. By 
default, Weka’s NaiveBayes classifier assumes that the attributes are normally dis-
tributed given the class. You should override this by setting useSupervisedDiscretiza-
tion to true using the Generic Object Editor window. This will cause NaïveBayes to 
discretize the numeric attributes in the data with a supervised discretization tech-
nique. In most practical applications of NaïveBayes, supervised discretization works 
better than the default method. It also produces a more comprehensible visualization, 
which is why we use it here.

Exercise 17.3.7. The plot that is generated by visualizing the predicted class 
probabilities of NaïveBayes for each pixel location is quite different from 
anything we have seen so far. Explain the patterns in it.

Visualizing Decision Trees and Rule Sets
Decision trees and rule sets are similar to nearest-neighbor learning in the sense that 
they are quasi-universal: In principle, they can approximate any decision boundary 
arbitrarily closely. In this section, we look at the boundaries generated by JRip 
and J48.

Generate a plot for JRip, with default options.

Exercise 17.3.8. What do you see? Relate the plot to the output of the rules 
that you get by processing the data in the Explorer.
Exercise 17.3.9. The JRip output assumes that the rules will be executed in 
the correct sequence. Write down an equivalent set of rules that achieves the 
same effect regardless of the order in which they are executed. Generate a plot 
for J48, with default options.
Exercise 17.3.10. What do you see? Again, relate the plot to the output that 
you get by processing the data in the Explorer interface. One way to control 
how much pruning J48 performs is to adjust the minimum number of instances 
required in a leaf, minNumObj.
Exercise 17.3.11. Suppose you want to generate trees with 3, 2, and 1 leaf 
node, respectively. What are the exact ranges of values for minNumObj that 
achieve this, given default values for the other parameters?
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Messing with the Data
With the Boundary Visualizer you can modify the data by adding or removing points.

Exercise 17.3.12. Introduce some noise into the data and study the effect on 
the learning algorithms we looked at above. What kind of behavior do you 
observe for each algorithm as you introduce more noise?

17.4 PREPROCESSING AND PARAMETER TUNING
Now we look at some useful preprocessing techniques, which are implemented as 
filters, as well as a method for automatic parameter tuning.

Discretization
As we know, there are two types of discretization techniques: unsupervised ones, 
which are “class blind,” and supervised ones, which take the class value of the 
instances into account when creating intervals. Weka’s main unsupervised method 
for discretizing numeric attributes is weka.filters.unsupervised.attribute.Discretize. 
It implements these two methods: equal-width (the default) and equal-frequency 
discretization.

Find the glass dataset glass.arff and load it into the Explorer interface. Apply the 
unsupervised discretization filter in the two different modes explained previously.

Exercise 17.4.1. What do you observe when you compare the histograms 
obtained? The one for equal-frequency discretization is quite skewed for some 
attributes. Why?

The main supervised technique for discretizing numeric attributes is weka.filters.
supervised.attribute.Discretize. Locate the iris data, load it, apply the supervised 
discretization scheme, and look at the histograms obtained. Supervised discretization 
strives to create intervals within which the class distribution is consistent, although 
the distributions vary from one interval to the next.

Exercise 17.4.2. Based on the histograms obtained, which of the discretized 
attributes would you consider to be most predictive? Reload the glass data and 
apply supervised discretization to it.
Exercise 17.4.3. For some attributes there is only a single bar in the histo-
gram. What does that mean?

Discretized attributes are normally coded as nominal attributes, with one value 
per range. However, because the ranges are ordered, a discretized attribute is actually 
on an ordinal scale. Both filters have the ability to create binary attributes rather than 
multivalued ones, by setting the option makeBinary to true.
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Exercise 17.4.4. Choose one of the filters and use it to create binary attributes. 
Compare the result with the output generated when makeBinary is false. What 
do the binary attributes represent?

More on Discretization
Here we examine the effect of discretization when building a J48 decision tree for 
the data in ionosphere.arff. This dataset contains information about radar signals 
returned from the ionosphere. “Good” samples are those showing evidence of some 
type of structure in the ionosphere, while for “bad” ones the signals pass directly 
through the ionosphere. For more details, take a look at the comments in the ARFF 
file. Begin with unsupervised discretization.

Exercise 17.4.5. For J48, compare cross-validated accuracy and the size of the 
trees generated for (1) the raw data, (2) data discretized by the unsupervised 
discretization method in default mode, and (3) data discretized by the same 
method with binary attributes.

Now turn to supervised discretization. Here a subtle issue arises, discussed near 
the end of Section 11.3 (page 432). If Exercise 17.4.5 were simply repeated using 
a supervised discretization method, the result would be overoptimistic. In effect, 
because cross-validation is used for evaluation, the data in the test set has been taken 
into account when determining the discretization intervals. This does not give a fair 
estimate of performance on fresh data.

To evaluate supervised discretization fairly, use FilteredClassifier from Weka’s 
metalearners. This builds the filter using the training data only, and then evalu-
ates it on the test data using the discretization intervals computed for the training 
data. After all, that is how you would have to process fresh data in practice.

Exercise 17.4.6. Using FilteredClassifier and J48, compare cross-validated 
accuracy and the size of the trees generated for (4) supervised discretization 
in default mode, and (5) supervised discretization with binary attributes.
Exercise 17.4.7. Compare these with the results for the raw data from Exercise 
17.4.5. How can decision trees generated from discretized data possibly be 
better predictors than ones built from raw numeric data?

Automatic Attribute Selection
In most practical applications of supervised learning not all attributes are equally 
useful for predicting the target. For some learning schemes, redundant and/or irrel-
evant attributes can result in less accurate models. As you found in Section 17.2, it 
is tedious to identify useful attributes in a dataset manually; automatic attribute 
selection methods are usually more appropriate.
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Attribute selection methods can be divided into filter and wrapper methods (see 
Section 7.1, page 308). The former apply a computationally efficient heuristic to 
measure the quality of a subset of attributes; the latter measure the quality of an 
attribute subset by building and evaluating an actual classification model, which is 
more expensive but often delivers superior performance.

The Explorer interface’s Select attributes panel applies attribute selection 
methods to datasets. The default is to use CfsSubsetEval, described in Section 
11.8 (page 488), which evaluates subsets of attributes. An alternative is to evaluate 
attributes individually using an evaluator like InfoGainAttributeEval (see Section 
11.8, page 491) and then rank them by applying a special “search” method, namely 
the Ranker, as described Section 11.8 (page 490).

Exercise 17.4.8. Apply the ranking technique to the labor negotiations data in 
labor.arff to determine the four most important attributes based on information 
gain.2

CfsSubsetEval aims to identify a subset of attributes that are highly correlated 
with the target while not being strongly correlated with one another. It searches 
through the space of possible attribute subsets for the “best” one using the BestFirst 
search method by default, although other methods can be chosen. In fact, choosing 
GreedyStepwise and setting searchBackwards to true gives backward elimination, 
the search method you used manually in Section 17.2.

To use the wrapper method rather than a filter method, such as CfsSubsetEval, 
first select WrapperSubsetEval and then configure it by choosing a learning algo-
rithm to apply and setting the number of cross-validation folds to use when evalu-
ating it on each attribute subset.

Exercise 17.4.9. On the same data, run CfsSubsetEval for correlation-based 
selection, using the BestFirst search. Then run the wrapper method with 
J48 as the base learner, again using the BestFirst search. Examine the 
attribute subsets that are output. Which attributes are selected by both 
methods? How do they relate to the output generated by ranking using 
information gain?

More on Automatic Attribute Selection
The Select attributes panel allows us to gain insight into a dataset by applying attri-
bute selection methods to it. However, as with supervised discretization, using this 
information to reduce a dataset becomes problematic if some of the reduced data is 
used for testing the model (as in cross-validation). Again, the reason is that we have 

2Note that most evaluators, including InfoGainAttributeEval and CfsSubsetEval, discretize numeric 
attributes using Weka’s supervised discretization method before evaluating them.



looked at the class labels in the test data while selecting attributes, and using the 
test data to influence the construction of a model biases the accuracy estimates 
obtained.

This can be avoided by dividing the data into training and test sets and applying 
attribute selection to the training set only. However, it is usually more convenient 
to use AttributeSelectedClassifer, one of Weka’s metalearners, which allows an 
attribute selection method and a learning algorithm to be specified as part of a  
classification scheme. AttributeSelectedClassifier ensures that the chosen set of 
attributes is selected based on the training data only.

Now we test the three attribute selection methods from above in conjunction 
with NaïveBayes. NaïveBayes assumes independence of attributes, so attribute 
selection can be very helpful. You can see the effect of redundant attributes by 
adding multiple copies of an attribute using the filter weka.filters.unsupervised.
attribute.Copy in the Preprocess panel. Each copy is obviously perfectly correlated 
with the original.

Exercise 17.4.10. Load the diabetes classification data in diabetes.arff and add 
copies of the first attribute. Measure the performance of NaïveBayes (with 
useSupervisedDiscretization turned on) using cross-validation after you have 
added each one. What do you observe?

Do the above three attribute selection methods, used in conjunction with Attri-
buteSelectedClassifier and NaïveBayes, successfully eliminate the redundant attri-
butes? Run each method from within AttributeSelectedClassifier to see the effect on 
cross-validated accuracy and check the attribute subset selected by each method. 
Note that you need to specify the number of ranked attributes to use for the Ranker 
method. Set this to 8 because the original diabetes data contains 8 attributes (exclud-
ing the class). Specify NaïveBayes as the classifier to be used inside the wrapper 
method because this is the classifier for which we want to select a subset.

Exercise 17.4.11. What can you say regarding the performance of the three 
attribute selection methods? Do they succeed in eliminating redundant copies? 
If not, why?

Automatic Parameter Tuning
Many learning algorithms have parameters that can affect the outcome of learning. 
For example, the decision tree learner C4.5 has two parameters that influence the 
amount of pruning (we saw one, the minimum number of instances required in a 
leaf, in Section 17.3). The k-nearest-neighbor classifier IBk has a parameter (k) that 
sets the neighborhood size. But manually tweaking parameter settings is tedious, 
just like manually selecting attributes, and presents the same problem: The test data 
must not be used when selecting parameters; otherwise, the performance estimate 
will be biased.
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Weka’s metalearner CVParameterSelection searches for the best parameter set-
tings by optimizing cross-validated accuracy on the training data. By default, each 
setting is evaluated using tenfold cross-validation. The parameters to optimize are 
specified using the CVParameters field in the Generic Object Editor window. For 
each parameter, three pieces of information must be supplied: (1) a string that 
names it using its letter code (which can be found in the Javadoc for the cor-
responding classifier—see Section 14.2, page 525); (2) a numeric range of values 
to evaluate; and (3) the number of steps to try in this range (note that the param-
eter is assumed to be numeric). Click on the More button in the Generic Object 
Editor window for more information and an example.

For the diabetes data used in the previous section, use CVParameterSelection 
in conjunction with IBk to select the best value for the neighborhood size, ranging 
from 1 to 10 in 10 steps. The letter code for the neighborhood size is K. The 
cross-validated accuracy of the parameter-tuned version of IBk is directly com-
parable with its accuracy using default settings because tuning is performed by 
applying inner cross-validation runs to find the best parameter value for each 
training set occurring in the outer cross-validation—and the latter yields the final 
performance estimate.

Exercise 17.4.12. What accuracy is obtained in each case? What value is 
selected for the parameter-tuned version based on cross-validation on the full 
data set? (Note: This value is output in the Classifier Output text area because, 
as mentioned earlier, the model that is output is the one built from the full 
dataset.)

Now consider parameter tuning for J48. If there is more than one parameter string 
in the CVParameters field, CVParameterSelection performs a grid search on the 
parameters simultaneously. The letter code for the pruning confidence parameter is 
C, and you should evaluate values from 0.1 to 0.5 in five steps. The letter code for 
the minimum leaf size parameter is M, and you should evaluate values from 1 to 10 
in 10 steps.

Exercise 17.4.13. Run CVParameterSelection to find the best parameter value 
setting. Compare the output you get to that obtained from J48 with default 
parameters. Has accuracy changed? What about tree size? What parameter 
values were selected by CVParameterSelection for the model built from the 
full training set?

17.5 DOCUMENT CLASSIFICATION
Next we perform some experiments in document classification. The raw data is text, 
and this is first converted into a form suitable for learning by creating a dictionary 
of terms from all the documents in the training corpus and making a numeric 
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attribute for each term using Weka’s unsupervised attribute filter StringToWord-
Vector. There is also the class attribute, which gives the document’s label.

Data with String Attributes
The StringToWordVector filter assumes that the document text is stored in an attribute 
of type String—a nominal attribute without a prespecified set of values. In the fil-
tered data, this is replaced by a fixed set of numeric attributes, and the class attribute 
is put at the beginning, as the first attribute.

To perform document classification, first create an ARFF file with a string attri-
bute that holds the document’s text—declared in the header of the ARFF file using 
@attribute document string, where document is the name of the attribute. A nominal 
attribute is also needed to hold the document’s classification.

Exercise 17.5.1. Make an ARFF file from the labeled mini-documents in Table 
17.4 and run StringToWordVector with default options on this data. How many 
attributes are generated? Now change the value of the option minTermFreq to 
2. What attributes are generated now?
Exercise 17.5.2. Build a J48 decision tree from the last version of the data you 
generated.
Exercise 17.5.3. Classify the new documents in Table 17.5 based on the 
decision tree generated from the documents in Table 17.4. To apply the same 

Table 17.4 Training Documents

Document Text Classification

The price of crude oil has increased significantly yes
Demand for crude oil outstrips supply yes
Some people do not like the flavor of olive oil no
The food was very oily no
Crude oil is in short supply yes
Use a bit of cooking oil in the frying pan no

Table 17.5 Test Documents

Document Text Classification

Oil platforms extract crude oil unknown
Canola oil is supposed to be healthy unknown
Iraq has significant oil reserves unknown
There are different types of cooking oil unknown
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filter to both training and test documents, use FilteredClassifier, specifying the 
StringToWordVector filter and J48 as the base classifier. Create an ARFF file 
from Table 17.5, using question marks for the missing class labels. Configure 
FilteredClassifier using default options for StringToWordVector and J48, and 
specify your new ARFF file as the test set. Make sure that you select Output 
predictions under More options in the Classify panel. Look at the model and 
the predictions it generates, and verify that they are consistent. What are the 
predictions?

Classifying Actual Documents
A standard collection of newswire articles is widely used for evaluating document 
classifiers. ReutersCorn-train.arff and ReutersGrain-train.arff are training sets 
derived from this collection; ReutersCorn-test.arff and ReutersGrain-test.arff are 
corresponding test sets. The actual documents in the corn and grain data are the 
same; only the labels differ. In the first dataset, articles concerning corn-related 
issues have a class value of 1 and the others have 0; the aim is to build a classifier 
that identifies “corny” articles. In the second, the labeling is performed with respect 
to grain-related issues; the aim is to identify “grainy” articles.

Exercise 17.5.4. Build classifiers for the two training sets by applying 
FilteredClassifier with StringToWordVector using (1) J48 and (2) 
NaiveBayesMultinomial, evaluating them on the corresponding test set in 
each case. What percentage of correct classifications is obtained in the four  
scenarios? Based on the results, which classifier would you choose?

Other evaluation metrics are used for document classification besides the per-
centage of correct classifications: They are tabulated under Detailed Accuracy By 
Class in the Classifier Output area—the number of true positives (TP), false posi-
tives (FP), true negatives (TN), and false negatives (FN). The statistics output by 
Weka are computed as specified in Table 5.7; the F-measure is mentioned in Section 
5.7 (page 175).

Exercise 17.5.5. Based on the formulas in Table 5.7, what are the best possible 
values for each of the output statistics? Describe when these values are 
attained.

The Classifier Output also gives the ROC area (also known as AUC), which, as 
explained in Section 5.7 (page 177), is the probability that a randomly chosen positive 
instance in the test data is ranked above a randomly chosen negative instance, based 
on the ranking produced by the classifier. The best outcome is that all positive 
examples are ranked above all negative examples, in which case the AUC is 1. In the 
worst case it is 0. In the case where the ranking is essentially random, the AUC is 0.5, 
and if it is significantly less than this the classifier has performed anti-learning!
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Exercise 17.5.6. Which of the two classifiers used above produces the best 
AUC for the two Reuters datasets? Compare this to the outcome for percent 
correct. What do the different outcomes mean?

The ROC curves discussed in Section 5.7 (page 172) can be generated by 
right-clicking on an entry in the result list and selecting Visualize threshold 
curve. This gives a plot with FP Rate on the x-axis and TP Rate on the y-axis. 
Depending on the classifier used, this plot can be quite smooth or it can be 
fairly irregular.

Exercise 17.5.7. For the Reuters dataset that produced the most extreme 
difference in Exercise 17.5.6, look at the ROC curves for class 1. Make a  
very rough estimate of the area under each curve, and explain it in words.
Exercise 17.5.8. What does the ideal ROC curve corresponding to perfect 
performance look like?

Other types of threshold curves can be plotted, such as a precision–recall curve 
with Recall on the x-axis and Precision on the y-axis.

Exercise 17.5.9. Change the axes to obtain a precision–recall curve. What is 
the shape of the ideal precision–recall curve, corresponding to perfect 
performance?

Exploring the StringToWordVector Filter
By default, the StringToWordVector filter simply makes the attribute value in the 
transformed dataset 1 or 0 for all single-word terms, depending on whether the word 
appears in the document or not. However, as mentioned in Section 11.3 (page 439), 
there are many options:

• outputWordCounts causes actual word counts to be output.
• IDFTransform and TFTransform: When both are set to true, term frequencies 

are transformed into TF × IDF values.
• stemmer gives a choice of different word-stemming algorithms.
• useStopList lets you determine whether or not stopwords are deleted.
• tokenizer allows different tokenizers for generating terms, such as one that 

produces word n-grams instead of single words.

There are several other useful options. For more information, click on More in the 
Generic Object Editor window.

Exercise 17.5.10. Experiment with the options that are available. What options 
give a good AUC value for the two datasets above, using NaiveBayesMulti-
nomial as the classifier?



582 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Not all of the attributes (i.e., terms) are important when classifying documents. 
The reason is that many words are irrelevant for determining an article’s topic. Weka’s 
AttributeSelectedClassifier, using ranking with InfoGainAttributeEval and the Ranker 
search, can eliminate less useful attributes. As before, FilteredClassifier should be 
used to transform the data before passing it to AttributeSelectedClassifier.

Exercise 17.5.11. Experiment with this, using default options for 
StringToWordVector and NaiveBayesMultinomial as the classifier. Vary 
the number of the most informative attributes that are selected from the 
information gain–based ranking by changing the value of the numToSelect 
field in the Ranker. Record the AUC values you obtain. How many attributes 
give the best AUC for the two datasets discussed before? What are the best 
AUC values you managed to obtain?

17.6 MINING ASSOCIATION RULES
In order to get some experience with association rules, we work with Apriori, the 
algorithm described in Section 4.5 (page 144). As you will discover, it can be  
challenging to extract useful information using this algorithm.

Association-Rule Mining
To get a feel for how to apply Apriori, start by mining rules from the weather.
nominal.arff data that was used in Section 17.1. Note that this algorithm expects 
data that is purely nominal: If present, numeric attributes must be discretized first. 
After loading the data in the Preprocess panel, click the Start button in the Associate 
panel to run Apriori with default options. It outputs 10 rules, ranked according to 
the confidence measure given in parentheses after each one (they are listed in Figure 
11.16). As we explained in Chapter 11 (page 430), the number following a rule’s 
antecedent shows how many instances satisfy the antecedent; the number following 
the conclusion shows how many instances satisfy the entire rule (this is the rule’s 
“support”). Because both numbers are equal for all 10 rules, the confidence of every 
rule is exactly 1.

In practice, it can be tedious to find minimum support and confidence values that 
give satisfactory results. Consequently, as explained in Chapter 11, Weka’s Apriori 
runs the basic algorithm several times. It uses the same user-specified minimum 
confidence value throughout, given by the minMetric parameter. The support level 
is expressed as a proportion of the total number of instances (14 in the case of the 
weather data), as a ratio between 0 and 1. The minimum support level starts at a 
certain value (upperBoundMinSupport, default 1.0). In each iteration the support is 
decreased by a fixed amount (delta, default 0.05, 5% of the instances) until either a 
certain number of rules has been generated (numRules, default 10 rules) or the 
support reaches a certain “minimum minimum” level (lowerBoundMinSupport, 
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default 0.1)—because rules are generally uninteresting if they apply to less than 10% 
of the dataset. These four values can all be specified by the user.

This sounds pretty complicated, so we will examine what happens on the weather 
data. The Associator output text area shows that the algorithm managed to generate 
10 rules. This is based on a minimum confidence level of 0.9, which is the default 
and is also shown in the output. The Number of cycles performed, which is shown 
as 17, indicates that Apriori was actually run 17 times to generate these rules, with 
17 different values for the minimum support. The final value, which corresponds to 
the output that was generated, is 0.15 (corresponding to 0.15 × 14 ≈ 2 instances).

By looking at the options in the Generic Object Editor window, you can see that 
the initial value for the minimum support (upperBoundMinSupport) is 1 by default, 
and that delta is 0.05. Now, 1 – 17 × 0.05 = 0.15, so this explains why a minimum 
support value of 0.15 is reached after 17 iterations. Note that upperBoundMinSup-
port is decreased by delta before the basic Apriori algorithm is run for the first time.

The Associator output text area also shows how many frequent item sets were 
found, based on the last value of the minimum support that was tried (0.15 in this 
example). In this case, given a minimum support of two instances, there are 12 item 
sets of size 1, 47 item sets of size 2, 39 item sets of size 3, and six item sets of size 
4. By setting outputItemSets to true before running the algorithm, all those different 
item sets and the number of instances that support them are shown. Try it out!

Exercise 17.6.1. Based on the output, what is the support for this item set?

outlook = rainy humidity = normal windy = FALSE play = yes

Exercise 17.6.2. Suppose you want to generate all rules with a certain 
confidence and minimum support. This can be done by choosing appropriate 
values for minMetric, lowerBoundMinSupport, and numRules. What is the total 
number of possible rules for the weather data for each combination of values 
in Table 17.6?

Table 17.6 Number of Rules for Different Values of Minimum Confidence 
and Support

Minimum Confidence Minimum Support Number of Rules

0.9 0.3
0.9 0.2
0.9 0.1
0.8 0.3
0.8 0.2
0.8 0.1
0.7 0.3
0.7 0.2
0.7 0.1
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Apriori has some further parameters. If significanceLevel is set to a value between 
0 and 1, the association rules are filtered based on a χ2 test with the chosen signifi-
cance level. However, applying a significance test in this context is problematic 
because of the multiple comparison problem: If a test is performed hundreds of times 
for hundreds of association rules, it is likely that significant effects will be found 
just by chance—that is, an association seems to be statistically significant when 
really it is not. Also, the χ2 test is inaccurate for small sample sizes (in this context, 
small support values).

There are alternative measures for ranking rules. As well as confidence, Apriori 
supports lift, leverage, and conviction, which can be selected using metricType. More 
information is available by clicking More in the Generic Object Editor window.

Exercise 17.6.3. Run Apriori on the weather data with each of the four 
rule-ranking metrics, and default settings otherwise. What is the top-ranked 
rule that is output for each metric?

Mining a Real-World Dataset
Now consider a real-world dataset, vote.arff, which gives the votes of 435 U.S. 
congressmen on 16 key issues gathered in the mid-1980s, and also includes their 
party affiliation as a binary attribute. This is a purely nominal dataset with some 
missing values (corresponding to abstentions). It is normally treated as a classi-
fication problem, the task being to predict party affiliation based on voting patterns. 
However, association-rule mining can also be applied to this data to seek interest-
ing associations. More information on the data appears in the comments in the 
ARFF file.

Exercise 17.6.4. Run Apriori on this data with default settings. Comment on 
the rules that are generated. Several of them are quite similar. How are their 
support and confidence values related?
Exercise 17.6.5. It is interesting to see that none of the rules in the default 
output involve Class = republican. Why do you think that is?

Market Basket Analysis
In Section 1.3 (page 26) we introduced market basket analysis—analyzing customer 
purchasing habits by seeking associations in the items they buy when visiting a store. 
To do market basket analysis in Weka, each transaction is coded as an instance of 
which the attributes represent the items in the store. Each attribute has only one 
value: If a particular transaction does not contain it (i.e., the customer did not buy 
that item), this is coded as a missing value.

Your job is to mine supermarket checkout data for associations. The data in 
supermarket.arff was collected from an actual New Zealand supermarket. Take a 
look at this file using a text editor to verify that you understand the structure. The 
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main point of this exercise is to show you how difficult it is to find any interesting 
patterns in this type of data!

Exercise 17.6.6. Experiment with Apriori and investigate the effect of the 
various parameters described before. Write a brief report on the main findings 
of your investigation.


