

FIRST-ORDER LOGIC

CHAPTER 8

Outline

- ◊ Why FOL?
- ◊ Syntax and semantics of FOL
- ◊ Fun with sentences
- ◊ Wumpus world in FOL

Pros and cons of propositional logic

- 😊 Propositional logic is *declarative*: pieces of syntax correspond to facts
- 😊 Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- 😊 Propositional logic is *compositional*: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- 😊 Meaning in propositional logic is *context-independent* (unlike natural language, where meaning depends on context)
- 😢 Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares” except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains *facts*,
first-order logic (like natural language) assumes the world contains

- **Objects:** people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- **Relations:** red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- **Functions:** father of, best friend, third inning of, one more than, beginning of ...

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	degree of truth $\in [0, 1]$	known interval value

Syntax of FOL: Basic elements

Constants $KingJohn, 2, UCB, \dots$

Predicates $Brother, >, \dots$

Functions $Sqrt, LeftLegOf, \dots$

Variables x, y, a, b, \dots

Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$

Equality $=$

Quantifiers $\forall \exists$

Atomic sentences

Atomic sentence = $\textit{predicate}(\textit{term}_1, \dots, \textit{term}_n)$
or $\textit{term}_1 = \textit{term}_2$

Term = $\textit{function}(\textit{term}_1, \dots, \textit{term}_n)$
or *constant* or *variable*

E.g., $\textit{Brother}(\textit{KingJohn}, \textit{RichardTheLionheart})$
 $> (\textit{Length}(\textit{LeftLegOf}(\textit{Richard})), \textit{Length}(\textit{LeftLegOf}(\textit{KingJohn})))$

Complex sentences

Complex sentences are made from atomic sentences using connectives

$\neg S$, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

$>(1, 2) \vee \leq(1, 2)$

$>(1, 2) \wedge \neg >(1, 2)$

Truth in first-order logic

Sentences are true with respect to a **model** and an **interpretation**

Model contains ≥ 1 objects (**domain elements**) and relations among them

Interpretation specifies referents for

constant symbols \rightarrow objects

predicate symbols \rightarrow relations

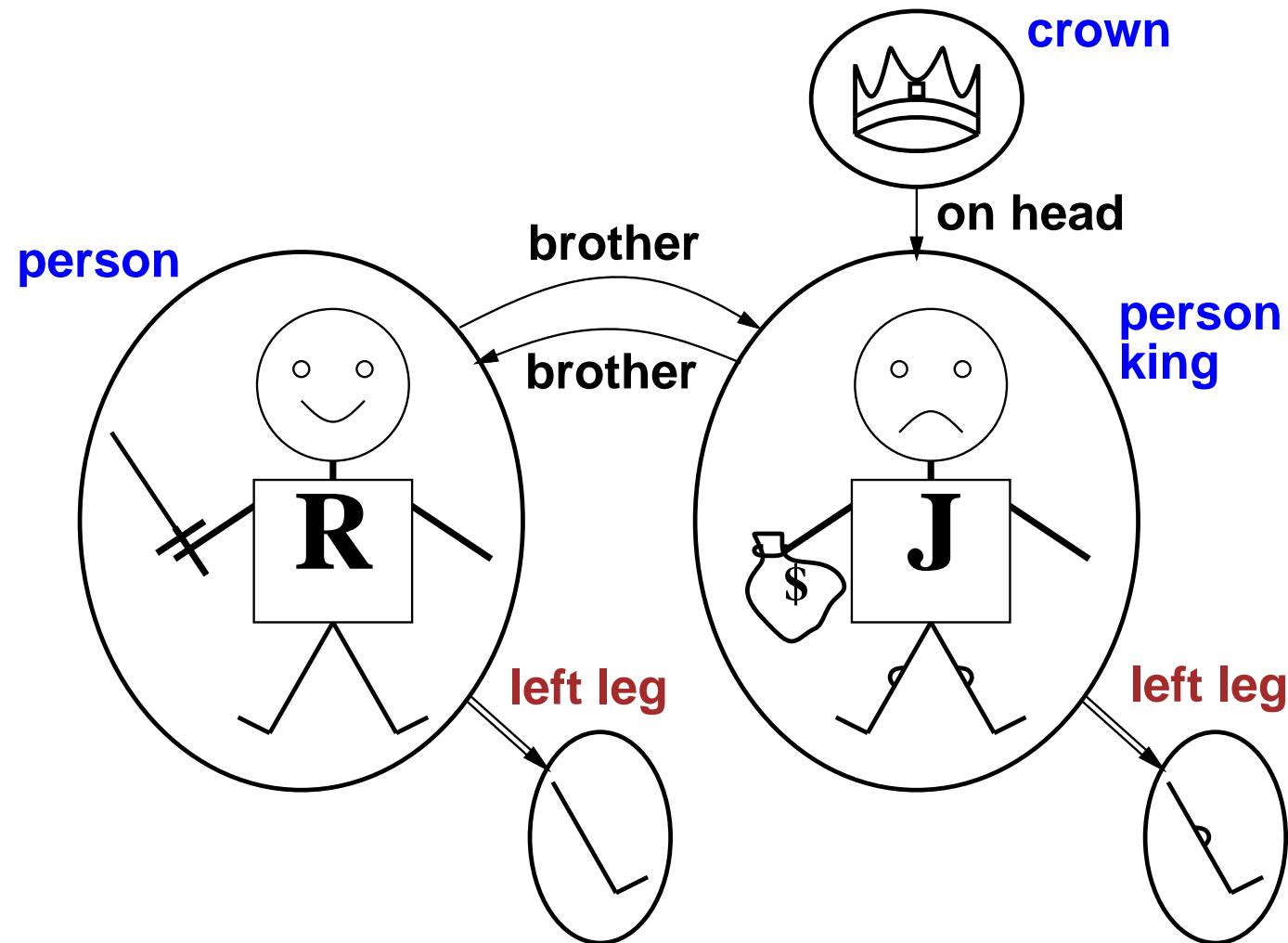
function symbols \rightarrow functional relations

An atomic sentence $\textit{predicate}(\textit{term}_1, \dots, \textit{term}_n)$ is true

iff the **objects** referred to by $\textit{term}_1, \dots, \textit{term}_n$

are in the **relation** referred to by *predicate*

Models for FOL: Example



Models for FOL: Lots!

We *can* enumerate the models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞

 For each k -ary predicate P_k in the vocabulary

 For each possible k -ary relation on n objects

 For each constant symbol C in the vocabulary

 For each choice of referent for C from n objects ...

Computing entailment by enumerating models is not going to be easy!

Universal quantification

$\forall \langle \text{variables} \rangle \ \langle \text{sentence} \rangle$

Everyone at Berkeley is smart:

$\forall x \ At(x, \text{Berkeley}) \Rightarrow \text{Smart}(x)$

$\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

$$\begin{aligned} & At(\text{KingJohn}, \text{Berkeley}) \Rightarrow \text{Smart}(\text{KingJohn}) \\ \wedge \ & At(\text{Richard}, \text{Berkeley}) \Rightarrow \text{Smart}(\text{Richard}) \\ \wedge \ & At(\text{Berkeley}, \text{Berkeley}) \Rightarrow \text{Smart}(\text{Berkeley}) \\ \wedge \ & \dots \end{aligned}$$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with \forall :

$$\forall x \ At(x, Berkeley) \wedge Smart(x)$$

means “Everyone is at Berkeley and everyone is smart”

Existential quantification

$\exists \langle \text{variables} \rangle \langle \text{sentence} \rangle$

Someone at Stanford is smart:

$\exists x \ At(x, \text{Stanford}) \wedge \text{Smart}(x)$

$\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

$At(\text{KingJohn}, \text{Stanford}) \wedge \text{Smart}(\text{KingJohn})$
 $\vee \ At(\text{Richard}, \text{Stanford}) \wedge \text{Smart}(\text{Richard})$
 $\vee \ At(\text{Stanford}, \text{Stanford}) \wedge \text{Smart}(\text{Stanford})$
 $\vee \dots$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

$\forall x \ \forall y$ is the same as $\forall y \ \forall x$ (why??)

$\exists x \ \exists y$ is the same as $\exists y \ \exists x$ (why??)

$\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$

$\exists x \ \forall y \ Loves(x, y)$

“There is a person who loves everyone in the world”

$\forall y \ \exists x \ Loves(x, y)$

“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

$\forall x \ Likes(x, IceCream)$ $\neg \exists x \ \neg Likes(x, IceCream)$

$\exists x \ Likes(x, Broccoli)$ $\neg \forall x \ \neg Likes(x, Broccoli)$

Fun with sentences

Brothers are siblings

Fun with sentences

Brothers are siblings

$$\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y).$$

“Sibling” is symmetric

Fun with sentences

Brothers are siblings

$$\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y).$$

“Sibling” is symmetric

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$$

One's mother is one's female parent

Fun with sentences

Brothers are siblings

$$\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y).$$

“Sibling” is symmetric

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$$

One's mother is one's female parent

$$\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \wedge Parent(x, y)).$$

A first cousin is a child of a parent's sibling

Fun with sentences

Brothers are siblings

$$\forall x, y \text{ } Brother(x, y) \Rightarrow Sibling(x, y).$$

“Sibling” is symmetric

$$\forall x, y \text{ } Sibling(x, y) \Leftrightarrow Sibling(y, x).$$

One's mother is one's female parent

$$\forall x, y \text{ } Mother(x, y) \Leftrightarrow (Female(x) \wedge Parent(x, y)).$$

A first cousin is a child of a parent's sibling

$$\forall x, y \text{ } FirstCousin(x, y) \Leftrightarrow \exists p, ps \text{ } Parent(p, x) \wedge Sibling(ps, p) \wedge Parent(ps, y)$$

Equality

$term_1 = term_2$ is true under a given interpretation
if and only if $term_1$ and $term_2$ refer to the same object

E.g., $1 = 2$ and $\forall x \ \times(Sqrt(x), Sqrt(x)) = x$ are satisfiable
 $2 = 2$ is valid

E.g., definition of (full) *Sibling* in terms of *Parent*:

$$\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg(x = y) \wedge \exists m, f \ \neg(m = f) \wedge \\ Parent(m, x) \wedge Parent(f, x) \wedge Parent(m, y) \wedge Parent(f, y)]$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at $t = 5$:

$\text{Tell}(KB, \text{Percept}([\text{Smell}, \text{Breeze}, \text{None}], 5))$

$\text{Ask}(KB, \exists a \ \text{Action}(a, 5))$

I.e., does the KB entail any particular actions at $t = 5$?

Answer: Yes, $\{a/\text{Shoot}\}$ \leftarrow substitution (binding list)

Given a sentence S and a substitution σ ,

$S\sigma$ denotes the result of plugging σ into S ; e.g.,

$S = \text{Smarter}(x, y)$

$\sigma = \{x/\text{John}, y/\text{Jack}\}$

$S\sigma = \text{Smarter}(\text{John}, \text{Jack})$

$\text{Ask}(KB, S)$ returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

“Perception”

$$\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smell(t)$$

$$\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$$

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already?

$$\forall t \ AtGold(t) \wedge \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$$

$Holding(Gold, t)$ cannot be observed

\Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:

$$\forall x, t \ At(\text{Agent}, x, t) \wedge \text{Smelt}(t) \Rightarrow \text{Smelly}(x)$$

$$\forall x, t \ At(\text{Agent}, x, t) \wedge \text{Breeze}(t) \Rightarrow \text{Breezy}(x)$$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

$$\forall y \ \text{Breezy}(y) \Rightarrow \exists x \ \text{Pit}(x) \wedge \text{Adjacent}(x, y)$$

Causal rule—infer effect from cause

$$\forall x, y \ \text{Pit}(x) \wedge \text{Adjacent}(x, y) \Rightarrow \text{Breezy}(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the *Breezy* predicate:

$$\forall y \ \text{Breezy}(y) \Leftrightarrow [\exists x \ \text{Pit}(x) \wedge \text{Adjacent}(x, y)]$$

Keeping track of change

Facts hold in **situations**, rather than eternally

E.g., $Holding(Gold, Now)$ rather than just $Holding(Gold)$

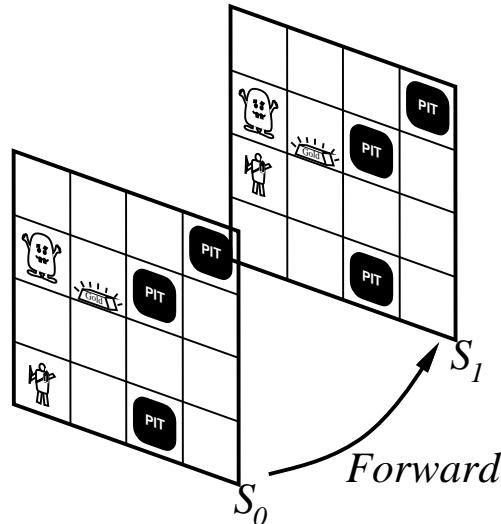
Situation calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate

E.g., Now in $Holding(Gold, Now)$ denotes a situation

Situations are connected by the *Result* function

$Result(a, s)$ is the situation that results from doing a in s



Describing actions I

“Effect” axiom—describe changes due to action

$$\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$$

“Frame” axiom—describe **non-changes** due to action

$$\forall s \ HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$$

Frame problem: find an elegant way to handle non-change

(a) representation—avoid frame axioms

(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, ...

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards \Leftrightarrow [an action made P true
 \vee P true already and no action made P false]

For holding the gold:

$$\begin{aligned} \forall a, s \ Holding(Gold, Result(a, s)) \Leftrightarrow \\ [(a = Grab \wedge AtGold(s)) \\ \vee (Holding(Gold, s) \wedge a \neq Release)] \end{aligned}$$

Making plans

Initial condition in KB:

$At(Agent, [1, 1], S_0)$

$At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

Answer: $\{s / Result(Grab, Result(Forward, S_0))\}$

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \dots, a_n]$

$PlanResult(p, s)$ is the result of executing p in s

Then the query $Ask(KB, \exists p \ Holding(Gold, PlanResult(p, S_0)))$
has the solution $\{p/[Forward, Grab]\}$

Definition of $PlanResult$ in terms of $Result$:

$$\forall s \ PlanResult([], s) = s$$

$$\forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))$$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB