ADVERSARIAL SEARCH (GAME PLAYING)

CHAPTER 6

Chapter 6 1

Outline

S 0SSO

Games

Perfect play (minimax)

a—[3 pruning

Resource limits and approximate evaluation
Games of chance

Games of imperfect information

Chapter 6

2

(Games vs. search problems

“Unpredictable” opponent = solution is a strategy
specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Plan of attack:

e Computer considers possible lines of play (Babbage, 1846)
e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shan-
non, 1950)

e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)

e Pruning to allow deeper search (McCarthy, 1956)

Chapter 6 3

Types of games

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Chapter 6 4

Game tree (2-player, deterministic, turns)

MAX (X)
X X X
MIN (O) X X X
X X X
x]o x] To| [X
MAX (X) o
x]o[x] [x]o x]o
MIN (O) X X
xJo[x] [xJo[x] [x]o[x
TERMINAL o[x| [o]o[x X
o) x| x[o0]| [X[o[o
Utility -1 0 +1

Chapter 6 5

Minimax

Perfect play for deterministic, perfect-information games

|dea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
MAX

MIN

Chapter 6

6

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V4— —00
for a, sin SUCCESSORS(state) do v+ MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V4= 00
for a, s in SUCCESSORS(state) do v+ MIN(v, MAX-VALUE(s))
return v

Chapter 6 7

Properties of minimax

Complete??

Chapter 6

8

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal??

Chapter 6

9

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Chapter 6

10

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity??

Chapter 6

11

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(b™)

Space complexity?? O(bm) (depth-first exploration)

For chess, b =~ 35, m =~ 100 for “reasonable” games
= exact solution completely infeasible

But do we need to explore every path?

Chapter 6

12

a—f pruning example

MAX 23

MIN 3

Chapter 6 13

a—f pruning example

MAX 23
MIN 3 VA Y
X X

Chapter 6 14

a—f pruning example

MAX

MIN

N

14

Chapter 6

15

a—f pruning example

MAX

MIN

Chapter 6

16

a—f pruning example

MAX

MIN

Chapter 6

17

Why is it called o—37

MAX

MIN

MAX

MIN V

« is the best value (to MAX) found so far off the current path
If V' is worse than o, MAX will avoid it = prune that branch

Define 3 similarly for MIN

Chapter 6

18

The o—3 algorithm

function ALPHA-BETA-DECISION(state) returns an action
return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state, a, §) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
B, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
V< —0O0
for a, s in SUCCESSORS(state) do
v MAX(v, MIN-VALUE(s, , 5))
if v > [then return v
a <+ MAX(a, v)
return v

function MIN-VALUE(state, o,) returns a utility value
same as MAX-VALUE but with roles of «, 5 reversed

Chapter 6

19

Properties of o—5

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b™/?)
= doubles depth of search
= can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations are

relevant

Chapter 6

20

Resource limits

Suppose we have 100 seconds, explore 10* nodes/second
= 10°% nodes per move

Standard approach:

e cutoff test
e.g., depth limit (perhaps add quiescence search)

e evaluation function
= estimated desirability of position

Chapter 6 21

Evaluation functions

Black to move White to move

White slightly better Black winning
For chess, typically /inear weighted sum of features
Fval(s) = wifi1(s) + wafo(s) + ... + wypfu(s)

e.g., w1 = 9 with
fi(s) = (number of white queens) — (number of black queens), etc.

Chapter 6 22

Digression: Exact values don’t matter

MAX
MIN K 2 1K 20
4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

Chapter 6 23

Cutting off search

MINIMAXCUTOFF is identical to MINIMAXVALUE except
1. TERMINAL? is replaced by CUTOFF?
2. UTILITY is replaced by EVAL

Does it work in practice?
4-ply lookahead is a hopeless chess player!

4-ply ~ human novice
8-ply =~ typical PC, human master
12-ply =~ Deep Blue, Kasparov

Chapter 6

24

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

Chapter 6 25

Nondeterministic games: backgammon

O 1 2 3 4 5 6 /7 8 9 1011 12
V“V“V“V‘

ity !

25 24 23 22 21 20 19 18 17 16 15 14 13

‘;V “V “V O\

4‘» 4‘» 4‘» 4

vHv

N 4‘» <

it

Chapter 6

26

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

MAX

CHANCE

MIN

Chapter 6 27

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MIINIMAX, except we must also handle chance nodes:

if state is a M AX node then

return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Chapter 6 28

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon = 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)° &~ 1.2 x 10°

As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

a—0(pruning is much less effective

TDGAMMON uses depth-2 search + very good EVAL
~ world-champion level

Chapter 6

29

Digression: Exact values DO matter

MAX

DICE

MIN

400 400

Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff

Chapter 6 30

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the game*

|dea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals

*

Special case: if an action is optimal for all deals, it's optimal.*

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Chapter 6

31

Example

Four-card bridge /whist /hearts hand, M AX to play first

Chapter 6 32

Example

Four-card bridge/whist/hearts hand, MAX to play first

wax Efooeala] B8 [
wn - fiofeofonfss] z:m

Ttz ©

—
m m

i ©

EE ZlE
— — O

Chapter 6 33

Example

Four-card bridge /whist /hearts hand, M AX to play first

ErCEICE ZHECE CZEEEE TRl ¢
— — — —

cofoafss] [ieeloalse] Gy [ioollle| o [0 a8
MAX [ew[cefcs|7a . .
MiN - [sofoefosfss EIEZ! iofee
max [oo]oofealr] 4 pofoo il » or

e D

N [[oafosfes] [Jealoa]es l .

MAX

MIN

=-0.5

-0.5

Chapter 6 34

Commonsense example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Chapter 6 35

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:
take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you'll be run over by a bus;

take the right fork and you'll find a mound of jewels.

Chapter 6 36

Commonsense example

Road A leads to a small heap of gold pieces

Road B leads to a fork:
take the left fork and you'll find a mound of jewels;
take the right fork and you'll be run over by a bus.

Road A leads to a small heap of gold pieces
Road B leads to a fork:
take the left fork and you'll be run over by a bus;

take the right fork and you'll find a mound of jewels.

Road A leads to a small heap of gold pieces

Road B leads to a fork:
guess correctly and you'll find a mound of jewels;
guess incorrectly and you'll be run over by a bus.

Chapter 6

37

Proper analysis

* Intuition that the value of an action is the average of its values

in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
> Acting to obtain information
¢ Signalling to one's partner
¢ Acting randomly to minimize information disclosure

Chapter 6

38

