CONSTRAINT SATISFACTION PROBLEMS

CHAPTER 5

Chapter 5

1

Outline

> CSP examples

> Backtracking search for CSPs

> Problem structure and problem decomposition

> Local search for CSPs

Chapter 5 2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box"—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables X; with values from domain D,

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Chapter 5

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South
Australia
New South Wales

Tasmania

Variables WA, NT,), NSW,V,SA, T
Domains D; = {red, green, blue}
Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

Chapter 5 4

Example: Map-Coloring contd.

\/\/—

Tasmv'a

Solutions are assignments satisfying all constraints, e.g.,

{WA=red, NT = green,Q) =red, NSW = green,V =red, SA=blue, T = green}

Chapter 5 5

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O
Q

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 5

6

Varieties of CSPs

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
{ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., StartJob; + 5 < StartJobs
{> linear constraints solvable, nonlinear undecidable

Continuous variables
{ e.g., start/end times for Hubble Telescope observations
> linear constraints solvable in poly time by LP methods

Chapter 5

7

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA #£ green

Binary constraints involve pairs of variables,

eg., SA+4WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Chapter 5

Example: Cryptarithmetic

o4 -

W
W
U

O[O O

|+

@ X X

Variables: FFTU W R O X; Xy X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff B, T, U, W, R, O)
O+0=R+10-X,, etc.

Chapter 5 9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 5 10

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation

4) b= (n — {£)d at depth /£, hence n!d" leaves!!!!

Chapter 5 11

Backtracking search

Variable assignments are commutative, i.e.,

[WA=redthen NT = green| sameas [NT = greenthen WA =red]

Only need to consider assignments to a single variable at each node
= b = d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25

Chapter 5 12

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING([], ¢csp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution /failure
if assigned is complete then return assigned
var<— SELECT-UNASSIGNED-VARIABLE(VARIABLES|csp)|, assigned, csp)
for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
if value is consistent with assigned according to CONSTRAINTS|[csp| then
result < RECURSIVE-BACKTRACKING([var = value|assigned], csp)
if result # failure then return result
end
return failure

Chapter 5

13

Backtracking example

NS

Chapter 5 14

Backtracking example

SO

—]

o o

Backtracking example

Backtracking example

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4, Can we take advantage of problem structure?

Chapter 5 18

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values (most constrained)

Sl SSl SSEA o

Chapter 5 19

Degree heuristic

Tie-breaker among MRV variables

Degree Heuristic:
choose the variable with the most constraints on remaining variables

R R R

Chapter 5 20

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

\ S
l? ‘_LE_»‘_L):< ‘ Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Chapter 5 21

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SO

WA NT Q NSW Vv SA T

Chapter 5 22

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSE S

WA NT Q NSW v SA T
ENEENEENEENEENE NN RN
I | ITErirerniren i HEN N

Chapter 5 23

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSE Sl Se

WA NT Q NSW V SA T
ENE(ENEENEENEENE(ENE(ENE
I | ITErirerniren i HEN N
I | H | /H EH|EY N HEEE

Chapter 5 24

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

s o E

WA NT Q NSW V SA T
EEECE[EEE[EEE[EEE[EE N[
s CE[ErEErE[EEE] TE[E
| N B E[EEE] H[E
I | H] | | E— |

Chapter 5 25

Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

SSlA SSBa Se

WA NT Q NSW v SA T
ENEENEIRNEIRETEIET EE DR
I EEFEENEENE HET N
I || H EETHE HET N

NT and S A cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Chapter 5 26

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value of X there is some allowed y

SSE S Se

WA NT Q NSW \% SA

Chapter 5

27

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

SSE S Se

WA NT Q NSW \% SA

Chapter 5

28

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

SSE S Se

WA NT Q N

SW \%
I O 1 o H[EEE

\«

If X loses a value, neighbors of X need to be rechecked

SA T

Chapter 5 29

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

SSE S Se

WA NT Q N

I O ISV;I:EI[VI) (L

— ‘< —
If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5

30

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X7, X, ..., X,,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X5, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each Xj in NEIGHBORS[X;| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff we remove
a value

removed < false

for each z in DoMAIN[X;]| do

if no value y in DOMAIN[X] allows (z,y) to satisfy the constraint between X
and Xj
then delete x from DOMAIN[X,]; removed < true
return removed

Chapter 5 31

Problem structure

O
Q

Tasmania and mainland are independent subproblems

|dentifiable as connected components of constraint graph

Chapter 5 32

Problem structure contd.

Suppose each subproblem has ¢ variables out of n total

Worst-case solution cost is n/c - d°, linearin n

E.g., n=280,d=2, c=20
280 = 4 billion years at 10 million nodes/sec
4-2%Y = 0.4 seconds at 10 million nodes/sec

Chapter 5 33

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in

O(n d?) time
Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 5 34

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

2e e§

2. For 5 from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)

3. For j from 1 to n, assign X consistently with Parent(X)

Chapter 5 35

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
O—& O—@
c P NG
O O
® ®

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d®- (n — c¢)d?), very fast for small ¢

Chapter 5

36

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with A(n) = total number of violated constraints

Chapter 5

37

Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks

= vl ™ v B

Chapter 5

38

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., » = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R =

number of variables

CPU
time

.

- .I
cr|t|c_aI
ratio

Chapter 5 39

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

lterative min-conflicts is usually effective in practice

Chapter 5 40

