INFORMED SEARCH ALGORITHMS

CHAPTER 4

Chapter 4 1

Outline

S OSSO

Best-first search

A* search

Heuristics
Hill-climbing
Simulated annealing

Genetic algorithms

Local search in continuous spaces

Chapter 4

2

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST[problem| applied to STATE(node) succeeds return node
fringe <+ INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 4

Best-first search

|dea: use an evaluation function for each node
— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

Chapter 4

4

Romania

with step costs in km

] Oradea

Arad
Sibiu gg Fagaras
118
80
Timisoara . Rimnicu Vilcea
11 ; ;
M Lugoj Pitesti
70 =
"] Mehadia 10
75 138
Dobreta [] 120
L Craiova

211

Neamt
u 87
] lasi
92
[} Vaslui
142
98
85 [[] Hirsova
Urziceni
] 86
Bucharest
90]
. . Eforie
] Giurgiu

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
las 226
L ugoj 244
M ehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vadui 199
Zerind 374

Chapter 4 5

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hsep(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4 6

Greedy search example

366

Chapter 4

7

Greedy search example

374

Chapter 4

8

Greedy search example

176

Chapter 4

9

Greedy search example

Chapter 4

10

Properties of greedy search

Complete??

Chapter 4

11

Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time??

Chapter 4 12

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,

lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space??

Chapter 4

13

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal??

Chapter 4

14

Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b™), but a good heuristic can give dramatic improvement

Space?? O(b™)—keeps all nodes in memory

Optimal?? No

Chapter 4

15

A* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n)+ h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.
(Also require h(n) > 0, so h(G) = 0 for any goal G.)

E.g., hsip(n) never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4

16

A* search example

366=0+366

Chapter 4

17

A* search example

393=140+253 447=118+329 449=75+374

Chapter 4 18

A* search example

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

Chapter 4 19

A* search example

_Aad
. sbu_ imisoara) C zerind >

447=118+329 449=75+374

Carad D PCragaras>y COradea > @imnion Vieed

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > _Sibiu_3

526=366+160 417=317+100 553=300+253

Chapter 4 20

A* search example

_Arad
. sbu_ Cimisoara) C zerind >

447=118+329 449=75+374

Carad > Fagaras> COradea> @mes Ve

646=280+366 671=291+380

C_Sibiu > Qucharesd CCraiova DD Pitesti D C_Sibiu_2

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Chapter 4 21

A* search example

. sbu_ Cimisoara) C zerind >

447=118+329 449=75+374

Carad > agaras> COradea> @mies Vs>

646=280+366 671=291+380

C_Sibiu_> Pitest
591=338+253 450=450+0 526=366+160 553=300+253

>

{Eﬂﬂﬁiﬂﬁb» C Craiova)

418=418+0 615=455+160 607=414+193

Chapter 4 22

Optimality of A* (standard proof)

Suppose some suboptimal goal (G5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal G.
Sart

N

G@® G,

f(GQ) — g(G2> since h(Gz) =0
> ¢g(G) since GGy is suboptimal
> f(n) since h is admissible

Since f(G9) > f(n), A* will never select G5 for expansion

Chapter 4 23

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value*

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < f;11

Chapter 4

24

Properties of A*

Complete??

Chapter 4

25

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time??

Chapter 4

26

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h X length of soln.]

Space??

Chapter 4

27

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h X length of soln.]

Space’? Keeps all nodes in memory

Optimal??

Chapter 4

28

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h X length of soln.]
Space’? Keeps all nodes in memory

Optimal?? Yes—cannot expand f; 1 until f; is finished

A* expands all nodes with f(n) < C*
A* expands some nodes with f(n) = C*
A* expands no nodes with f(n) > C*

Chapter 4 29

Proof of lemma: Consistency

A heuristic is consistent if
h(n) < c(n,a,n’) + h(n')
If h is consistent, we have c(n,a,n’)

f(n') = g(n') + h(n)

g(n) + c(n,a,n’) + h(n')
g(n) + h(n)

f(n)

l.e., f(n) is nondecreasing along any path.

1V

Chapter 4 30

Admissible heuristics

E.g., for the 8-puzzle:

hi1(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4

5 6

8 3 1
Start State

1 2 3
4 5 6
7 8

Goal State

Chapter 4

31

Admissible heuristics

E.g., for the 8-puzzle:

hi1(n) = number of misplaced tiles
ho(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hi(S) =77 6
ho(S) =77 440+3+3+1+0+2+1 = 14

Chapter 4

32

Dominance

If ho(n) > hi(n) for all n (both admissible)
then hy dominates hq and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d =24 IDS =~ 54,000,000,000 nodes
A*(hy1) = 39,135 nodes
A*(hs) = 1,641 nodes

Chapter 4 33

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then hi(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then
ho(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 4 34

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Chapter 4 35

Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search

Chapter 4

36

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities

Chapter 4 37

Example: n-queens

Put n queens on an n X n board with no two queens on the same

row, column, or diagonal

Move a queen to reduce number of conflicts

W
W

WY
B

h=5

Almost always solves n-queens problems almost instantaneously

for very large n

=

Chapter 4

38

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current <~ MAKE-NODE(INITIAL-STATE([problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current
current <— neighbor

end

Chapter 4

39

Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

A global maximum

value

local maximum

states

In continuous spaces, problems w/ choosing step size, slow convergence

Chapter 4

40

Simulated annealing

|dea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE([problem])

for t< 1 to oo do
T < schedule][{]
if 7= 0 then return current
next < a randomly selected successor of current
AFE <+ VALUE[nezt] — VALUE[current]
if AE > 0 then current < next

else current < next only with probability e #/T

Chapter 4 41

Properties of simulated annealing

At fixed “temperature” T', state occupation probability reaches
Boltzman distribution

p(x) = e kT

T" decreased slowly enough =—> always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Chapter 4

42

Local beam search

|dea: keep k states instead of 1; choose top k& of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k£ states end up on same local hill
|dea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Chapter 4

43

Genetic algorithms

Search and optimization methods inspired by natural selection

Population based stochastic search + generate successors from pairs of

states

24748552

32752411

24415124

32543213

Fithess

24 31%

23 29%

20 26%

11 14%

32752411

32748552

327491p2

24748552

24752411

24752411

32752411

322p2124

24415124

:>_<< 32752124

24415411

2441541[7]

Selection Pairs

Cross—Over

Chapter 4 44

Genetic algorithms contd.

GAs require states encoded as strings (GPs use trees reprsenting programs)

Crossover helps when substrings are meaningful components (decomposable
problems)

GAs and GPs are examples of Evolutionary Computation methods

Chapter 4 45

Continuous state spaces

Suppose we want to site three airports in Romania:

— 6-D state space defined by (z1,2), (22,92), (73, ys3)
— objective function f(x1, s, 9, Yo, T3, Y3) =
sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers +0 change in each coordinate

Gradient methods compute

vp_(2F 9f of of of of
B 0z’ 591’ 0z’ 5927 (%3’ Oys

to increase/reduce f, e.g., by x < x + aV f(x)

Sometimes can solve for V f(x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x < x — H;l(x)Vf(x)
to solve V f(x) = 0, where H;; = 0*f /0z;0z;

Chapter 4 46

