PROBLEM SOLVING AND SEARCH

CHAPTER 3

Chapter 3 1

Outline

S S S SO

Problem-solving agents
Problem types
Problem formulation
Example problems

Basic search algorithms

Chapter 3

2

Problem-solving agents

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING- AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
90al, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)

if seq is empty then
90al < FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, 90al)
seq<— SEARCH(problem)

action < RECOMMENDATION(seq, state)

seq < REMAINDER(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

Chapter 3

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 4

Example: Romania

"] Oradea
Neamt
- 87
75 .
] lasi
.(‘
o 92
Sibiu o9 Fagaras
118 JVaslui
80
Timisoara lenlcu Vilcea
142
: : 211
111 = Lugoj Pitesti
70 - 08 |
_ 85 : : Hirsova
JMehadia 101 .y Urziceni
Q 86
S 190 138 Bucharest
Dobreta
= L 90
raiova o Eforie
] Giurgiu

Chapter 3 5

Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable => contingency problem
percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

Unknown state space = exploration problem (“online”)

Chapter 3 6

Example: vacuum world

Single-state, start in #5. Solution??

1 | =A) 2 =)
o8 | 2R oR | BB
3 |4 4 =]
3 R
5 | =A) 6 =)
2R 2R
7 | = 8 =)

Chapter 3 7

Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}

=)
R
e.g., Right goes to {2,4,6,8}. Solution?7 3 é
=)
=)

=)
B | %2R
=)
s
=)
oFR
=)

Chapter 3

8

Example: vacuum world

Single-state, start in #5. Solution??

|Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}

[Right, Suck, Le ft, Suck]

Contingency, start in #5

=)
R
e.g., Right goes to {2,4,6,8}. Solution?7 3 é
=)
=)

Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.

Solution??

=)
B | %2R
=)
s
=)
oFR
=)

Chapter 3

9

Example: vacuum world

Single-state, start in #5. Solution??

|Right, Suck] 1 ﬁ
Conformant, start in {1,2,3,4,5,6,7,8} 5 [
e.g., Right goes to {2,4,6,8}. Solution?7 pr
[Right, Suck, Le ft, Suck]
5 | =)

Contingency, start in #5
Murphy's Law: Suck can dirty a clean carpet

. . . 7 | =)
Local sensing: dirt, location only.

Solution??
[Right, if dirt then Suck]

=)
B | %2R
=)
s
=)
oFR
=)

Chapter 3

10

Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs

e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > 0

A solution is a sequence of actions
leading from the initial state to a goal state

Chapter 3

11

Selecting a state space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., 'Arad — Zerind" represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Chapter 3

12

Example: vacuum world state space graph

FRLTED ELLED
LCAQU AQDR

states??
actions??
goal test??
path cost??

Chapter 3 13

Example: vacuum world state space graph

(el T D (& 1 1[4
Yo - AN\«

states?7: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost?7: 1 per action (0 for NoOp)

Chapter 3 14

Example: The 8-puzzle

7 2 4 1 2
5 6 4 5
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??

Chapter 3

15

Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states?7: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test?7: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard|

Chapter 3 16

Example: robotic assembly

P

- - R/\“‘R

states??: real-valued coordinates of

robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!

path cost??: time to execute

Chapter 3 17

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Chapter 3

18

Tree search example

Chapter 3

19

Tree search example

Chapter 3

20

Tree search example

Chapter 3

21

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent, action
A

State || 5 ||| 4 Node depth =6
g=6
6 Il 11l s
= {ale
7 3 Il 2 >

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.

Chapter 3 22

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem| applied to STATE(node) succeeds return node
fringe <+ INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
s4—a new NODE
PARENT-NODE[s| <— node; ACTION([s| <— action; STATE[s| < result
PATH-COST[s] <~ PATH-C0ST[node] + STEP-COST(node, action, s)
DEPTH[s] < DEPTH[node| + 1
add s to successors

return successors

Chapter 3

23

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be o)

Chapter 3 24

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

lterative deepening search

Chapter 3

25

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

>®)

Chapter 3 26

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(A,
D> (B, ©

Chapter 3 27

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Chapter 3 28

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(A
(B O
>O & ® G

Chapter 3 29

Properties of breadth-first search

Complete??

Chapter 3

30

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Chapter 3 31

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0+03+ ...+ b +b(b?— 1) = O(b?}), i.e., exp. in d

Space??

Chapter 3 32

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0+03+ ...+ b +b(b?— 1) = O(b?}), i.e., exp. in d

Space?? O(b%*!) (keeps every node in memory)

Optimal??

Chapter 3 33

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1+b+0+03+ ...+ b +b(b?— 1) = O(b?}), i.e., exp. in d
Space?? O(b%*!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 10MB /sec
so 24hrs = 860GB.

Chapter 3 34

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > ¢

Time?? # of nodes with g < cost of optimal solution, O(bl¢"/¢l)
where C* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(bw*/d)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Chapter 3 35

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

>®

Chapter 3 36

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(A
>(B) ©

Chapter 3 37

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 38

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 39

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 40

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 41

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 42

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 43

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

(&
4C

Chapter 3 44

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 46

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Chapter 3 47

Properties of depth-first search

Complete??

Chapter 3 48

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??

Chapter 3 49

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 50

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear spacel!

Optimal??

Chapter 3 51

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear spacel!

Optimal?? No

Chapter 3 52

Depth-limited search

= depth-first search with depth limit [,
i.e., nodes at depth [have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln /fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln /fail /cutoff
cutoff-occurred? < false
if GOAL-TEST[problem|(STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Chapter 3

53

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth< 0 to oo do
result <— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Chapter 3

54

Iterative deepening search [=0

Limit=0

>®

Chapter 3

55

Iterative deepening search | =1

Limit=1

>®

>(B) © 20

o e

Chapter 3

56

Iterative deepening search | =2

Limit = 2 0 ©

Chapter 3 57

Iterative deepening search [=3

Limit=3

>®

>(B) ©

Chapter 3

58

Properties of iterative deepening search

Complete??

Chapter 3 59

Properties of iterative deepening search

Complete?? Yes

Time??

Chapter 3 60

Properties of iterative deepening search

Complete?? Yes

Time?? (d+ 100 +db' + (d — 1)0* + ... + b = O(b")

Space??

Chapter 3 61

Properties of iterative deepening search

Complete?? Yes
Time?? (d+ 100 +db' + (d — 1)0* + ... + b = O(b")
M?? O(bd)

Optimal??

Chapter 3 62

Properties of iterative deepening search

Complete?? Yes
Time?? (d+ 100 +db' + (d — 1)0* + ... + b = O(b")
M?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right:

N(IDS) = 50+ 400 + 3, 000 + 20, 000 4 100, 000 = 123,450

N(BFS) = 10+ 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Chapter 3 63

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time pit1 plC /el b b! b
Space b+l b/ C /el bm bl bd
Optimal? Yes* Yes* No No Yes

Chapter 3 64

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential

onel

Chapter 3

65

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)
end

Chapter 3

66

Summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

lterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Chapter 3 67

