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What is Machine Learning?

Simon Says:

“Learning denotes changes in the system that enable
the system to do the same task ... more effectively
next time.”

Example Tasks:

e Classify an object as an instance (or non-instance)
of a general concept. (Inductive Concept Learning.)

e Solve a search problem. (Speedup Learning.)



Types of Learning

e Learning by being told:
Teacher states the rules of grammar.
Knowledge Compilation.

e Learning from examples:

Teacher shows examples of good and bad
sentences.

Inductive Learning.
e Learning by discovery:
Student talks and teacher corrects his grammoar.

Automated Theory Formation.



Inductive Argument

GGiven:

Conclude:

(Vo) P(z) = Q(z)



The Old Problem of Induction

e Why are inductive arguments justified?
e Hume: Because they have worked in the past.
e Russell: That’s using induction to justify induction.

e Goodman: Inductive arguments are not justified.



The New Problem of Induction

How does an intelligent agent choose among many
possible inductive generalizations of his observations?



Goodman’s Paradox

Examples:

Emerald(a) A Green(a) (Sunday).
Emerald(b) N\ Green(b) (Monday).
Emerald(c) A Green(c) (Tuesday).

GGeneralizations:

(Vx)Emerald(z) = Green(z)
(Va)Emerald(z) = Grue(x)

An object is “grue” if it is green on Sunday, Monday
and Tuesday, but is blue for the rest of the week.



Inductive Bias

“Any criteria for choosing one concept description
over another, other than strict consistency with the
training examples.” (Mitchell)

e E.o.. A biased concept description language.

e [.g.. A biased learning algorithm.



Occam’s Razor

e Choose the simplest hypothesis.
e That accounts for the observation.
e “Green” is simpler than “Grue”

e S50 choose a hypothesis involving the term “Green”.



Concept Learning Problem Definition

e Given Training Data:

— Positive Examples:

(Object Description, +Label)
— Negative Examples:

(Object Description, — Label)

e F'ind rule for predicting whether future examples
are positive or negative.

e “Concept Membership Rule”.



Definitions

e Instance Description Language:

— Language for describing example objects.

— E.g., Boolean, Integer or Real Vector.
e Concept Description Language:

— Language for describing concepts.
— E.g., Conjunctive: A(v; = k;).



Decision Trees

e A concept description language.

e For instances represented as feature vectors.

e Fach internal node checks the value of a feature.
e Branches are labeled by possible values.

e Leaves are labeled:

“4+” indicates member of the concept.

“

-7 indicates not a member of the concept.
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A Decision Tree for Discrete Feature Vectors

Color?

Green Red Blue

Size?

Big Small



A Decision Tree for Continuous Feature Vectors

W < 130 ; W >= 130



Learning Decision Trees

e Goal: Find a smallest tree that correctly classifies
all the training examples.

e NP Hard: (Hyafil and Rivest, 1976).

e We must use heuristics if CPU time 1s limited.



ID3: Greedy Algorithm to Find Small Decision Trees

(Given a set of labeled instances:

1. Find a feature that “best” divides the instances
into uniform sets.

2. Recursively call ID3 on each subset.

What does “best” mean?



Using Information Theory

e et S be a set of unclassified instances.

e Assume we know the fractions of positive and
negative instances in S:

T =

P Fraction of positive instances.

p~ = Fraction of negative instances.

e Now someone tells us the classification of some
Instance 1n set S.

e What is the information value of this new fact?
I(p*,p~) = —(pT)loga(p™) — (p™)loga(p™)

e The information value of the fact is the Entropy ot
the instances.
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Finding a “Best” Feature

1. For each feature f do:

(a) Use f to partition instances into sets Sq,..., Sp.
(b) For each set S;, determine p;” and p; .
(c) Let
Gain(f) = 1(p*,p™) = iy () 107 07,
2. Choose a feature f with highest value of Gain(f).



ID3: Quinlan (Discrete Feature Vectors)

ID3(INSTANCES, FEATURES):

. If all INSTANCES are positive, then Return(Positive-Leaf).
. If all INSTANCES are negative, then Return(Negative-Leaf).
. Let BEST = Maxarg (f in FEATURES) Gain(f).
. Let R be the root of a decision tree splitting on BEST.
. For each value V of BEST do:

a. Let S = Subset of INSTANCES with BEST = V.

b. Attach to R the subtree ID3(S,FEATURES - {BEST}).

OO & W N -



An ID3 Example

Color Shape ©Size Class
Red |Square|Big +
Blue |Square|Big +
Red |Round|Small| -
Green | Square | Small| -

Red |Round |Big +
Green | Round | Big -

O O x| WD =

Initial Call:

ID3({1,2,3,4,5,6},{Color, Shape,Size})



Finding the Best Feature

Gain(Color) = 1(3/6,3/6)
—(3/6) - 1(2/3,1/3)
—(1/6) - I(1/1,0/1)

—(2/6) - 1(0/2,2/2)
= 1-0.459 = 0.541

Gain(Shape) = 1(3/6,3/6)
—(3/6) - 1(2/3,1/3)

—(3/6) - 1(1/3,2/3)
= 1—0.918 = 0.082

Gain(Size) = 1(3/6,3/6)
—(2/3) - 1(3/4,1/4)

—(1/3) - 1(0/2,2/2)
= 1 —0.541 = 0.459

Color is best!



Tree Returned by ID3

Green

Color?

Red

Size?

Big Small

Blue



Generating Rules from Decision Trees

e One rule for each path from root to a leaf node.
e Antecedent: Conjunction of all decisions on path.

e Consequent: Label of the leaf node.

Color = Green = —

Color = Blue = +

Color = Red N\ Size = Big = +
Color = Red N\ Size = Small = —



C4.5: Quinlan (Continuous Feature Vectors)

e Similar to handling of discrete feature vectors.
e For each internal, splitting node:

— Choose best feature.

— Choose direction < or > of test.
— Choose threshold £ of test: f < kor f > k.



Estimating Accuracy of a Concept Description

e Data Rich: Separate Training and Test Sets.

— Select a random subset of the training examples.
— Withold it from the learning algorithm.
— Use 1t as an unbiased test set.

e Data Poor: Cross Validation

— Divide data into n subsets.

— Learn one concept description for each collection
of n — 1 subsets.

— Test each concept description on the
corresponding witheld subset.

— Use average of n error rates as an estimate of
the accuracy when learning from all the data.



Neural Networks

e Also Known As:

— Connectionist Machines.

— Parallel Distributed Processing.
e Early Work: Perceptrons.
e Current Work: Backpropagation.



Perceptron

e Rosenblatt, 1958.
e Very simple computing device.
e Very simple learning device.

e Inspired by rough analogy with neuron.



Perceptron

Input Units Output Units




Perceptron Output Function

1WA X+ WXy > T

A = 0 Otherwise.



Examples
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Thresholds as Weights

Notice that

1s equivalent to

WiX1+...+WpX;, —1T >0

or



Thresholds as Weights

e Pretend each node has an extra imput whose value
is always 1 and whose weight is —7', called the
“bias”.

e Learning updates the bias just like all the other
weights.



Thresholds as Weights
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Learning in Neural Networks

e Learn values of weights from /O pairs.
e Start with random weights.

e Load training example’s input.

e Observe computed output.

e Compare to desired output.

e Modity weights to reduce difference.

e [terate over all training examples.

e Terminate when weights stop changing.



Perceptron Learning Rule

AW; =n(D — A)X,;

X; 18 a node’s input.

W; 1s the corresponding weight.
AW, is the change in weight.

D 1is the desired output.

A is the actual observed output.

7 1s the learning rate.



Learning the Or Function

AW; = 2(D — A)X;
A

X1 X2 X3=1



Learning the Or Function
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Perceptron Convergence Theorem

“If a set of 1/O pairs is learnable, then the Perceptron
Learning Rule will find the necessary weights.”

Minsky and Papert, 1988.



Linear Separability

The output function W X1+ ...+ W, X, > T
defines a hyperplane that splits the input space into
two half spaces.

T




Linear Separability: The XOR Function

Can a single line separate the two classes?

X1




Solution: Hidden Units
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Backpropagation (Backprop) Networks

e Network contains hidden units.

e Each unit obeys “Sigmoidal Activation Function”.

A = 1
= e WX ot Wy X —T)



Behavior of Sigmoid Function
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Implementation of the XOR Function

X1 X2



Backpropagation Learning Rule for Weights of Edges
from Hidden Units to an Output Unit 4

H; is a node’s input (a hidden node’s output).
W, 1s the corresponding weight.

AW;; 1s the change in weight.

D is the desired output.

Aj 1s the actual observed output.

1 1s the learning rate.



Backpropagation Learning Rule for Weights of Edges
from Input Units to a Hidden Unit 2

AWy = nHi(1 — Hy) E; X,

X}, 1s a node’s input.

W, 1s the corresponding weight.

AW, is the change in weight.

Ei = ijlwijAj(l — A]>(DJ — A]) 1s the
propagated error from the n output units.

H; 1s the actual observed output.

7 1s the learning rate.



Motivation for the Backpropagation Learning Rules

e The weights W = (W7q, ..., W)y,) define a point in
an n-dimensional Euclidean space.

e Fach point W in the space defines a network.

e Fach point W has an associated error rate:
E = 5%(D; — A;)?
e We compute the gradient VE with respect to W.

e Each learning iteration changes W to W — nVE.
e A “Gradient Descent” algorithm.



Applications of Backpropagation Networks

e NE'Ttalk converts character strings to phonemes.
e Neurogammon won the 1989 Computer Olympiad.

e ALVINN steers a vehicle along a single lane
highway.



Advantages and disadvantages of Neural Networks

Advantages:

e Generalization capability.

e Low sensitivity to noise.

Disadvantages:

e Relative expressiveness.
e Computational efficiency.
e Transparency (black box).

e Hard to use prior knowledge.



